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Abstract
We develop and analyze a model of framing under ambiguity. Frames are cir-
cumstances, unobservable to the analyst, that shape the agent’s perception of the
relevant ambiguity. The analyst observes a choice correspondence that represents
the set of possible choices under the various decision frames. We provide axioms
that allow us to operationalize each frame as a set of priors, while the agent’s
utility index remains fixed. We show that the analyst can identify the unique
minimum set of decision frames. One agent is more consistent than another
if the former has a unique choice whenever the latter does. We characterize
comparative consistency in terms of the model parameters and apply this result to
characterize the aggregation of preferences that satisfy the Unanimity criterion.
Finally, we characterize the behavior of agents who recognize that they are subject
to different frames and learn by combining their frames into a single model.
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1. Introduction
In this paper, we present a model of decision making under uncertainty with framing effects.
More specifically, we analyze decision-makers who confront Knightian uncertainty and whose
reasoning about this uncertainty is influenced by the manner in which the choice problem is pre-
sented. Each frame suggests a different assessment of the underlying uncertainty and therefore,
may yield a different choice from a given set of options. Once the frame is fixed, the decision
maker is a maxmin expected utility maximizer. The frame determines the set of probabilities
over which expected utility is minimized.

Our motivation is the observation that decision makers are constrained by limited cognitive re-
sources; they suffer from limited attention, limited memory or computational ability or a coarse
understanding of contingencies. Such decision makers cannot identify, assess and integrate all
available payoff-relevant information into unified decision procedure. In the absence of such a
coherent procedure, the decision maker may be prone to mistakes and biases and may end up
making different choices in seemingly identical situations.

To illustrate our framework, we consider a hypothetical student, Alice, preparing for an exam
of unknown difficulty. She needs to decide whether to spend the day studying for the exam or
work on her history paper. She mentions the exam to one of her friends who asks whether Alice
thinks the exam will be hard or not hard. Alice realizes that if the exam is hard, she is likely to
fail no matter how she spends the day. However, if the exam is not hard, an extra day of studying
is likely to make the difference between success and failure. Hence, Alice decides to devote her
day to studying for the exam.

Consider the following alternative scenario in which Alice, instead of discussing the exam with a
friend, mentions it to her brother who states that in his opinion, the key is to assess whether the
exam will be easy or not easy. Alice figures that if the exam is not easy, then there is a possibility
of a failure whether she studies for the exam or not, and if the exam is easy, she will likely pass
even if she spends the day on her history paper. Based on this reasoning, Alice concludes that
she should devote her day to the history paper.

Note that each frame yields an incomplete specification of the underlying uncertainty. We inter-
pret this incompleteness as ambiguity. With the friend’s framing, Alice contemplates the events
hard and not hard and hence these events become unambiguous while the events easy and neither
easy nor hard are suppressed and remain ambiguous. With the brother’s framing, Alice contem-
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plates the events easy and not easy and hence these events become unambiguous while the events
hard and neither easy nor hard are suppressed and remain ambiguous.

The analyst is unlikely to know whether Alice’s framing of the problem was influenced by her
friend or her sister; moreover, it is possible that Alice operates with a different set of states/events
than the analyst. For the outside observer, such frame-susceptible agent behaves as if she hasmul-
tiple ways to perceive the uncertainty. In this paper, we remain agnostic about the particular way
how the unobservable framing affects the agent’s perception of uncertainty; we focus, instead,
on the analysis of the resulting observable choices.

The primitive of our Framed Ambiguity model is a choice correspondence that maps non-empty
compact sets of Anscombe-Aumann acts to subsets of possible choices from those sets. Our ax-
ioms on this correspondence are equivalent, by Theorem 1, to the following representation:

c(A) = ⋃
i

ci(A)

ci(A) =
{

f ∈ A
∣∣∣ min
µ∈Pi

EµU( f ) ≥ min
µ∈Pi

EµU(g) ∀g ∈ A
}

for all i. Hence, each frame i identifies a set of probability distributions Pi describing the uncer-
tainty associated with that frame, while vNM expected utility function U remains the same for
all frames. After adopting a particular frame, the agent becomes a Gilboa and Schmeidler (1989)
maxmin expected utility maximizer.

To take into account the agent’s susceptibility to framing, we require Weak Axiom of Revealed

Preference (WARP) to hold only for choices among constant acts, when framing of uncertainty is
irrelevant. For general menus, we relaxWARP by retaining Sen’s α (contraction consistency) but
replacing Sen’s β (expension consistency) with a weaker axiom, Aizerman’s Property, which says
that if an act added to the menu is not chosen, then acts chosen in the original menu are chosen
in the enlarged menu as well.

Under framing, a decision maker exhibits “ambiguity-loving” behavior: she may choose one act
under one frame, another act under another frame, but never choose a mixture of the two acts
(Proposition 2). Our Indirect Ambiguity Aversion axiom demands that adding a convex combina-
tion of two acts to the menu should prevent a third act to be chosen whenever adding each of the
two acts to the menu separately also prevents this third act to be chosen.

In Theorem 2, we show that the analyst can identify the agent’s expected utility function up to a
positive affine transformation and also a unique minimum family of frames. Moreover, we char-
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acterize the set of redundant frames—those that can be added to the minimum representation—as
frames constructed from the minimum family by intersections of the corresponding sets of be-
liefs that satisfy a novel Coherency property. An intersection of sets in a linear space is coherent
if the intersection operation commutes with projections on linear subspaces. If all sets of beliefs
in a representation are singletons; that is, if the decision maker is a subjective expected utility
maximizer with frame-dependent beliefs, then the representation is unique (Corollary 1).

We consider two criteria for comparing framed-ambiguity agents: decision maker 1 ismore deci-

sive than decision maker 2 if from each menu, decision maker 1 chooses a subset of acts chosen
by decision maker 2. Decision maker 1 is more consistent than decision maker 2, if whenever
decision maker 2 chooses a unique option from a menu, so does decision maker 1.

In Proposition 3, we show that one decision maker is more decisive than another if and only if
the two have the same expected utility functions and the former’s maximum family of frames is
a subset of the latter’s maximum family of frames. Hence, a more decisive agent is one who has
fewer frames. Theorem 3 provides a characterization of the more consistent than relationship for
decision makers with finitely many frames. Unlike greater decisiveness, greater consistency does
not require fewer frames; rather, it imposes restrictions on the type of additional frames that a
more consistent agent can have.

In Corollary 3, we apply Theorem 3 for the special case when one of the decision makers has a
single frame to characterize the set of Unanimous rules (Crès et al. (2011)) that aggregate sets of
beliefs of a group of Gilboa and Schmeidler (1989) agents who agree on utilities.

An agent who contemplates different frames and considers only priors that belong to all frames
behaves optimistically: she may choose an act in comparison to a constant alternative even if
there is no frame under which this choice is optimal. We call this type of behavior, novel in the
literature to the best of our knowledge, “optimistic learning” and characterise it in Proposition 6.

1.1. Related Literature

Our paper contributes to the literature on framing, ambiguity and aggregation of beliefs. In this
section, we introduce the related papers; in subsequent sections, we discuss the relation of our
results to the literature.

Tversky and Kahneman (1981) introduced the notion of framing. In their formulation, framing
introduces a benchmark that enables decision makers to identify some outcomes as gains and
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others as losses. In our formulation, a frame enables a decision maker to organize her reasoning
about the uncertainty.

Framed ambiguitymodel extends Gilboa and Schmeidler (1989) maxminmodel of ambiguity aver-
sion. We enrich it by allowing for multiple sets of beliefs and interpreting each set of beliefs as a
frame as in Salant and Rubinstein (2008)1.

The Anscombe-Aumann framework in Heller (2012) is a special case of our model under two
restrictions: all sets of beliefs are singletons, and the family of frames (singleton beliefs) is convex.
Heller (2012) builds on Lehrer and Teper (2011), where the primitive is preference relation.

In Chandrasekher et al. (2022), the authors consider a decision maker whose perception of uncer-
tainty is given by a family of sets of beliefs. They assume that the decision maker considers all
sets of beliefs in the family, and chooses the most optimistic set of beliefs and the most pessimistic
belief in a set to evaluate a given act. Thus, their agent respectsWARP in contrast to ours.

Kopylov (2021) builds amodel where an agent uses maxminmodels with different sets of beliefs to
evaluate acts. In his model, sets of beliefs are menu-dependent; moreover, eachmenu corresponds
to exactly one set of beliefs. We, in contrast, assume that the decision maker can use all frames
from the family to make choices from each menu. Thus, the two models are not nested.

Lu (2021) studies a random maxmin model. His primitive is a stochastic choice from menus
consisting of ex-ante lotteries over Anscombe-Aumann acts2. In terms of his model, we assume
less choice information available for the analyst: only the support of the distribution of choices
from menus consisting of degenerate lotteries over acts is known.

Stoye (2011) characterizes a model of minimax regret. In his model, the agent chooses acts that
minimize the worst-case—with respect to a set of priors and acts in the menu—expected regret.
The agent’s behavior can be represented by both Stoye (2011)’s model and our model if and only
if the agent is a subjective expected utility maximizer.3

Other papers that model framing of uncertainty include Bourgeois-Gironde and Giraud (2009),
Ahn and Ergin (2010) and Caplin and Martin (2020). Outside of the uncertainty framework, pref-
1We also assume that the analyst does not observe a frame, but observes only a resulting choice correspondence, as
in section 3 of Salant and Rubinstein (2008).

2He considers also stochastic choices from menus of Anscombe-Aumann acts (i.e. degenerate lotteries over
Anscombe-Aumann acts) in the Appendix of the paper (section A5).

3Under Stoye (2011)’s Ambiguity Aversion axiom, our model reduces to Gilboa and Schmeidler (1989) model (Propo-
sition 2), which reduces to subjective expected utility model under Stoye (2011)’s Independence axiom.
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erence identification in the environment with framing is studied in Goldin and Reck (2020).

Other decision-theoretic papers that consider violations of rationality in decision making under
uncertainty include Ok et al. (2012), Galaabaatar and Karni (2013) and Hara et al. (2019).

Our comparative statics result contributes to the literature on aggregation of preferences under
uncertainty. In Corollary 3, we consider aggregation of opinions of ambiguity averse experts that
agree on utilities, but disagree on sets of beliefs. We discuss the relation of our results to Crès
et al. (2011) and Hill (2011) in Section 4.4. Nascimento (2012) and Danan et al. (2016) are also
concerned with aggregation of preferences under uncertainty.

1.2. Structure of the Paper

The rest of the paper is organized as follows. Section 2 introduces our setup, axioms and framed
ambiguity model and provides characterization and identification results. Section 3 analyzes be-
havioral implications of agent’s sensitivity to framing. Section 4 provides our comparative statics
results and application to aggregation of preferences. All proofs are given in the Appendix.

2. Model
We consider an Anscombe-Aumann setup with an arbitrary set of prizes X and finite set of states
of the world S with |S| ≥ 2. An act f : S →△X is a mapping from the state space to the set △X

of finite-support probabilities (simple lotteries) on X . Denote the set of acts by H with typical
elements f , g,h, ... and endow it with the suprenummetric d induced by the suprenummetric on
the set of simple lotteries. The set of acts H is a mixture space with mixture operation defined via
(λ f +(1−λ)g)(s)=λ f (s)+(1−λ)g(s). A constant act is an act that gives the same consequences in
all states: f (s)= p ∀s ∈ S. We denote such acts by the corresponding lotteries p, q, r, ... whenever
it does not cause confusion. The set of constant acts is H0 ⊂ H.

The decision maker (DM, she) chooses acts from menus A,B,C, ... A menu is a non-empty com-
pact subset of H such that the set of prizes

{
x ∈ X

∣∣∃ f ∈ A, s ∈ S : f (s)(x) > 0
}
—that is, the set of

prizes that have positive probability to appear in some state for some act in the menu—is finite4.
We denote the set of all menus byK and endow it with the Hausdorff metric ρ induced by metric
d on H. A mixture between a menu and an act is defined via λA+(1−λ)g = {λ f +(1−λ)g | f ∈ A};
note that this mixture is also a menu. The set of menus consisting of constant acts is K0 ⊂K .
4Absent the last requirement, a subjective expected utility maximizer may have empty choice from some menus.
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2.1. Choice Correspondence

The analyst observes a choice correspondence5 c : K → 2H such that ∅ ̸= c(B) ⊆ B for any B ∈
K . We interpret c(B) as a subset of acts that is chosen from menu B by the DM. We make the
following implicit assumptions:

(i) DM’s perception of uncertainty could be influenced by the details of the decision problem
unobserved by the analyst that do not provide DM with additional information about the state of
the world. We call the collection of such details a frame.

(ii) An analyst is able to recover choice correspondence from the data by observing repeated
choices from various menus. Inconsistency of choices emerges only either because the framing
of the problem varies or because the agent is indifferent between alternatives.

(iii) The collection of frames that DM experiences is invariant across menus.

The first assumption is the premise of the project, as we are interested in the class of choice
correspondences that emerge as a result of the ambiguity framing. Assumption (ii) in particular
says that no learning occurs: notwithstanding the fact that DM faces multiple frames, she is
unable to connect her previous analysis to the current situation. Assumption (iii) says that we
don’t consider menu-dependent frames. Our final assumption is:

(iv) Decision maker is cautious toward the uncertainty that she can envision.

Assumption (iv) is common for models involving Knightian uncertainty. With framing, a new
motivation to use caution emerges: DM might think that the uncertainty relevant for the choice
problem is framed in a way that erroneously inflates values of some acts relative to others—
emphasizing priors that favor these acts. The worst case scenario evaluation can be a good ap-
proach to counteract this type of framing.

2.2. Axioms

We introduce behavioral axioms on the choice correspondence in the spirit of the discussed above
implicit assumptions (i)-(iv). Recall thatWeak Axiom of Revealed Preference (WARP)

WARP: ∀A,B ∈K c(A)∩B ̸=∅ =⇒ c(B)∩ A ⊆ c(A)

is equivalent to conditions α and β taken together:
5Modern literature discusses inference of choice correspondences from the stochastic choice data: Ok and Tseren-
jigmid (2019), Balakrishnan et al. (2022).
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α: ∀A,B ∈K c(A∪B)∩ A ⊆ c(A)

β: ∀A,B ∈K c(A∪B)∩ A ̸=∅ =⇒ c(A)⊆ c(A∪B)

Our first axiom relaxesWARP on the domain of menus that involve non-constant acts.

AXIOM 1 (Framed Uncertainty):

1.1 (α): ∀A,B ∈K c(A∪B)∩ A ⊆ c(A)

1.2 (Aizerman’s Property): ∀A ∈K ∀ f ∈ H f ̸∈ c(A∪ { f }) =⇒ c(A)⊆ c(A∪ { f })

1.3 (C-β): ∀A,B ∈K0 c(A∪B)∩ A ̸=∅ =⇒ c(A)⊆ c(A∪B)

If there is some framing under which an act is the best in the menu, it is the best in the subset of
this menu under the same framing; this justifies α. Aizerman’s Property relaxes β6; it says that
adding to the menu an act that will not be chosen does not prevent other acts to be chosen. Since
we analyze framing that influences only the perception of uncertainty, we requireWARP to hold
on the domain of menus consisting of constant acts, hence C-β should hold.

We generalize Gilboa and Schmeidler (1989)’s c-independence axiom to the choice setting:

AXIOM 2 (C-Independence): ∀A ∈K ∀p ∈ H0 ∀λ ∈ (0,1) c(λA+ (1−λ)p)=λc(A)+ (1−λ)p

C-Independence says that uncertainty regarding s ∈ S does not matter for evaluation of constant
acts, and that DM is able to factorize Knightian uncertainty and objective uncertainty regard-
ing the payoff given by an act. When β is relaxed, C-Independence does not fully capture this
intuition7, and we add the following property:

AXIOM 3 (No C-Hedging):
∀A ∈K ∀ f ∈ H ∀p ∈ H0 ∀λ ∈ (0,1) f , p ∈ A =⇒ c(A)⊆ c(A∪ {λ f + (1−λ)p})

To get the intuition behind No C-Hedging, suppose that in all circumstances, act λ f + (1−λ)p

seems to be so attractive that DM cannot choose h from A ∪ {λ f + (1−λ)p}. Irrespectively of
DM’s perception of uncertainty, either f or p should be at least as attractive as λ f + (1−λ)p,
since constant act p cannot effectively hedge against bad outcomes in f . Hence, the presence of
both f and p in A would not allow DM to choose h from A under any circumstances as well.

AXIOM 4 (Strict Monotonicity): ∀ f , g ∈ H g(s) ̸∈ c({ f (s), g(s)}) ∀s ∈ S =⇒ g ̸∈ c({ f , g})

Strict Monotonicity says that DM chooses consequentially: if she does not choose g(s) versus f (s)

6Let β hold. If f ̸∈ c(A∪ { f }), then c(A∪B)∩ A ̸=∅ for B = { f }; hence, c(A)⊆ c(A∪B)= c(A∪ { f }) by β.
7See Proposition 1 on page 9 and its proof in the Appendix.
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for any contingency s, she never chooses g versus f irrespectively of the perceived uncertainty.

Our last structural axiom formalizes assumption (iv):

AXIOM 5 (Indirect Ambiguity Aversion): ∀A ∈K ∀h ∈ A ∀ f , g ∈ H ∀λ ∈ (0,1)

h ̸∈ c(A∪ { f }) and h ̸∈ c(A∪ {g}) =⇒ h ̸∈ c(A∪ {λ f + (1−λ)g})

If DM is averse to ambiguity within the frame, she always considers act λ f + (1−λ)g to be as
good as at least one of acts f or g. If adding either f or g to the menu does not allow h to be
chosen under any frame, so should do a mixture of f and g.

Finally, we introduce our technical axioms8. We endow K ×H with the suprenum metric.

AXIOM 6 (Continuity): { (A, f ) ∈K ×H | f ∈ c(A) } is closed

AXIOM 7 (C-Non-Degeneracy): ∃p, q ∈ H0 such that {p}= c({p, q})

2.3. Representation

We denote by Π the set of all non-empty compact and convex sets of beliefs P ⊆△S. We endow
Π with the Hausdorff metric. When we talk about a set of beliefs P , we assume that P ∈Π.
DEFINITION 1. A Framed Ambiguity model is a pair (U ,A ), where U : △X → R is a non-

degenerate vNM expected utility function, and A ⊆ Π is a non-empty closed family of non-empty

compact and convex sets of beliefs P ∈Π.
DEFINITION 2. A framed ambiguity model (U ,A ) represents choice correspondence c(·) if

c(B) = ⋃
P∈A

arg max
f ∈B

WP ( f ) ∀B ∈K (1)

where
WP ( f ) = min

µ∈P

∑
s∈S

µ(s)U( f (s)) (2)

Note that each framed ambiguitymodel represents a choice correspondence given by eq. (1), since
c(B) ⊆ B, and arg max in eq. (1) is non-empty for each P ∈ A . The function WP : H →R is a
utility function of the Gilboa and Schmeidler (1989) maxmin model with vNM expected utility U

and set of beliefs P . An act belongs to c(B) whenever it maximizes menu B with respect to at least
one of utility functions {WP }P∈A . Thus, a framed ambiguity model operationalizes frames via sets
8We use C-Non-Degeneracy axiom instead of weaker statements f ̸∈ c({ f , g}) for some f , g ∈ H, or c(A) ̸= A for some
A ∈ K because there are models where the agent does not discriminate between constant acts (c(A) = A for all
A ∈ K0), but exhibits a non-degenerate choice—in particular, f ̸∈ c({ f , g}) for some f , g ∈ H—that satisfies axioms
1–6 (Lemma 27). Although such choice behavior is intriguing, it is not the focus of this paper.
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of beliefs P ∈Π; the family A is the set of frames, and each of them could be used as a rational
for choosing f ∈ c(B). We maintain an assumption that a frame is an unobserved property of a
decision problem and not a property of an individual act. Thus, an act is chosen if it is the best
under some framing, when all acts in the menu are evaluated under this framing.

Our first main result is a characterization theorem.

Theorem 1. A choice correspondence has a framed ambiguity representation if and only if Axioms

1–7 hold.

The axioms Framed Uncertainty (in particular, α and C-β), C-Independence, Continuity and C-

Non-Degeneracy imply the existence of the (unique up to a positive affine transformation) non-
degenerate vNM expected utility function U that represents the DM’s choice on the domain of
constant acts. The rest of the axioms guarantee that the DM’s choice over general menus is
represented by a framed ambiguity model. Conversely, a choice correspondence induced by a
framed ambiguity model satisfies axioms 1–7. Moreover, there are no redundant axioms:

Proposition 1. Let9 |X | > 2, and S be arbitrary, then for any axiom Ai ∈ {Axiom 1, ..., Axiom 7},

there is a choice correspondence ci such that Ai fails, and other axioms hold.

Consider the following example that sheds light on our identification result. Let X = {x, y} and
S = {1,2}. Agents 1 and 2 have the same vNM expected utility function U1(p) = U2(p) = p(x)

for p ∈△X . Denote by µ= Pr(s = 1), and let µ1 < µ2 < µ3 < µ4. The first agent has two frames:
A1 = {P,Q}, where P = conv({µ1,µ3}), Q = conv({µ2,µ4}). The second agent has the same frames
and also their intersection: A2 = {P,Q,P ∩Q}, P ∩Q = conv({µ2,µ3}). Thus, if f (1)(x)≥ f (2)(x),
act f is evaluated according to prior µ2 under frames P∩Q, Q, and µ1 under frame P . Similarly,
if f (1)(x) < f (2)(x), f is evaluated according to µ3 under frames P ∩Q, P , and µ4 under frame
Q. Hence, WP∩Q( f ) =max{WP ( f ),WQ( f )} for any f . Thus, if f maximizes WP∩Q(·) in a menu,
f also maximizes at least one of WP (·) or WQ(·). It follows that both agents’ choice behaviour is
captured by the same correspondence c(·), and the analyst cannot differentiate the agents.

Themultiplicity of representations in this example occurs becauseWP∩Q( f )=max{WP ( f ),WQ( f )}

for any act f . Our results show that this is the only reason for multiplicity of representations
(aside from the transformations of the vNM expected utility function). When |S| = 2, any closed
collection C of sets of beliefs with non-empty intersection has the property that W⋂

P∈C P ( f ) =
9If |X | = 2 the examples given in the proof of Proposition 1 go through as well, except one that shows the indepen-
dence of A1; the question if A1 is independent of A2-A7 in case when |X | = 2 is open.
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maxP∈C WP ( f ) for all f , thus the frame ⋂
P∈C P can be added to or deleted from the representa-

tion without altering the induced choice correspondence. For arbitrary S, this is true if and only
if the collection of frames satisfy the following intersection-coherency property10 (Lemma 11):

DEFINITION 3. A non-empty closed collection C of non-empty convex compact sets in △S ⊂RS is

intersection-coherent if for any linear subspace T of RS ,⋂
P∈C

pro jTP = pro jT
( ⋂

P∈C

P
)
̸= ∅.

If collection C is intersection-coherent, we say that
⋂

P∈C P is a coherent intersection of C .

Note that a singleton collection {P} is intersection-coherent, and its coherent intersection is P .

Theorem 2. If c(·) satisfy axioms 1–7, then there is a unique minimum family of frames A ⊆Π, a
unique maximum family of frames B ⊆Π and vNM expected utility function U such that:

(i) (U ′,A ′) represents c(·) if and only ifU ′ is a positive affine transformation ofU , andA ⊆A ′ ⊆B;

(ii) P ∈B if and only if P is a coherent intersection of a collection of frames C ⊆A .

Theorem 2 tells us that, although we cannot exclude some multiplicity of representations, there
is a unique minimum collection of frames that provides a framed ambiguity representation of
choice correspondence c(·) that satisfies our axioms. Coherent intersections of sub-collections of
frames in theminimum representation—and only such frames—can be added to the representation
without altering the induced choice correspondence.

To get the idea behind the identification result, consider some act f that is not the worst or the
best11. Call menu D maximal for act f if f ∈ c(D), but f ̸∈ c(D′) when D ⊊ D′. If DM’s choices
satisfyWARP, there exists exactly one such menu—the menu consisting of all acts that are weakly
worse than f ; that is, the lower counter set of f . Withmultiple frames, there aremultiple maximal
menus for an act, and each maxmimal menu corresponds to a lower counter set of f according
to the Gilboa and Schmeidler (1989) maxmin model with some set of beliefs P . The family of sets
of beliefs A recovered from the choice correspondence by this way is the minimum family of
frames in the representation.

Since the intersection of two different singleton sets of beliefs is empty, Theorem 2 implies that
in the special case when DM is a subjective expected utility maximizer with frame-dependent
belief, A is a unique collection of frames (singleton beliefs) in the representation of c(·).
10The definition can be applied to arbitrary sets in arbitrary linear spaces without change.
11That is, f chosen in some non-singleton menu, and also not chosen in some menu.
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Corollary 1. Let (U ,A ) represent c(·). If all frames P ∈A are singletons, then the representation

is unique up to a positive affine transformation of U .

2.4. Identification of Multi-Multiple Prior Models in the Literature

In this section, we discuss multi-multiple prior models in the literature and the extend to which
the beliefs are identified in these models in comparison with the framed ambiguity model.

In Chandrasekher et al. (2022), the set of relevant priors—the convex hull of the priors that are
used by DM to evaluate acts—is unique for the representation. This is true for our model as well:
the set of relevant priors is a convex hull of the union of all frames in the minimum family12.
Our model also exhibits a unique minimum family of sets of beliefs. Chandrasekher et al. (2022)’s
primitive is a rational (complete and transitive) preference relation; observing rational (satisfying
WARP ) choices from non-binary menus would not benefit the analyst in their model. In contrast,
in our model, the analyst benefits from observing choices from larger menus (Section 4.3).

In Kopylov (2021), the analyst can identify the projections of sets of beliefs that account for the
ambiguity relevant for given decision problems. In our model, the analyst can identify all priors
in each set of beliefs completely, but some redundant sets of beliefs may occur.

Lu (2021) shows that the distribution of sets of beliefs is uniquely identified if the analyst knows
either frequencies of choices from binary menus consisting of an ex-ante lottery over Anscombe-
Aumann acts and a constant act, or frequencies of choices from arbitrary menus of Anscombe-
Aumann acts (Theorem 7 in his paper). Lu (2021)’s model makes an implicit assumption that the
process of assignment of a menu is independent of the process governing the choice of the set
of beliefs that DM uses. Our model, in contrast, can accommodate a correlation between a menu
and a set of beliefs as long as it is not perfect—we operate only with the choice correspondence
c(·) that can be interpreted as the support of the distribution of choices for each menu.

In Heller (2012), the analyst identifies a convex family of singleton beliefs uniquely from the
choice correspondence. Our Corollary 1 shows that a non-convex family of singleton beliefs
is also identified uniquely. Our model, even constrained to singleton beliefs, admits a richer
behavior: let DM have two frames: P1 = {µ1} that favors f to 0.5 f +0.5g to g, and P2 = {µ2}

that favors g to 0.5 f +0.5g to f . Such DM chooses f and g, but not a compromise alternative
0.5 f +0.5g from the menu { f ,0.5 f +0.5g, g}. In contrast, DM in Heller (2012) should necessary
12This follows from Theorem 2.
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choose a compromise alternative 0.5 f +0.5g if she chooses f and g, since this mixture is the best
according to one of the intermediate beliefs λµ1 + (1−λ)µ2 for some λ ∈ (0,1).

3. Frame Sensitivity
In this section, we study the behavioral differences between agents who are sensitive to the fram-
ing of a choice problem—in the sense that they may change their decision depending on the
framing of the decision problem—and agents who are not sensitive to the framing. We show that
if framed-ambiguity agent respects one of the considered below axioms, then she respects them
all and she is not sensitive to framing.

Following the analysis of Sen (1971), consider the Revealed Preference relation ⪰⊆ H2 defined by
f ⪰ g ⇐⇒∃A ∈K : g ∈ A, f ∈ c(A). Note that when α holds—in particular, in our model—we can
equivalently define ⪰ as f ⪰ g ⇐⇒ f ∈ c({ f , g})13.

Revealed Preference Rationality: Revealed preference ⪰ is complete and transitive.

Next, consider the following Property γ from Sen (1971):

γ : ∀D : ∅ ̸=D ⊆K ,
⋃

B∈D B ∈K
⋂

B∈D c(B)⊆ c(
⋃

B∈D B)

Property γ says that if some alternative (act) is chosen in each of the sets B in collection D, it
must be chosen in their union as well. Sen (1971) shows that properties α and γ are equivalent
to the following property:

Normality: ∀A ∈K c(A)= { f ∈ A | f ⪰ g ∀g ∈ A}, where f ⪰ g iff ∃A ∈K : g ∈ A, f ∈ c(A)

Normality says that the agent chooses from a menu by maximizing the revealed preference rela-
tion. As pointed out by Heller (2012), α, γ and Aizerman’s Property do not implyWARP14.

To characterize the minmax regret model, Stoye (2011) considers the following axiom:

Ambiguity Aversion: ∀ f , g ∈ H,λ ∈ [0,1] ∀A ∈K : {g, f ,λ f + (1−λ)g}⊆ A

f , g ∈ c(A) =⇒ λ f + (1−λ)g ∈ c(A)

Ambiguity Aversion says that if the agent chooses acts f and g, she should choose act λ f +(1−λ)g,
provided that all these acts are in the menu. This argument does not work in a model with frames:
13Note that even if we demand Revealed Preference Rationality, α and Aizerman’s Property to hold together, this
does not imply WARP without other axioms. For instance, it can be that in each of the three pairs of f , g,h, both
alternatives are chosen, but c({ f , g,h})= { f , g}.

14These three axioms together are equivalent to axiomWARNI from Eliaz and Ok (2006).
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f can be chosen under frame 1, g under frame 2, but λ f + (1−λ)g is not chosen under frames 1
and 2. When α holds, Ambiguity Aversion is implied by the following property:

Direct Ambiguity Aversion: ∀A ∈K ∀ f , g ∈ H ∀λ ∈ (0,1)

f ∈ c(A∪ { f }) and g ∈ c(A∪ {g}) =⇒ λ f + (1−λ)g ∈ c(A∪ {λ f + (1−λ)g})

Finally, to clarify the role of No-C-Hedging axiom in our model, consider its alternative:

Pairwise No C-Hedging: ∀ f ,h ∈ H, ∀p ∈ H0

h ∈ c({h, f }) and h ∈ c({h, p}) =⇒ h ∈ c({h,λ f + (1−λ)p})

Pairwise No C-Hedging says that if, in binary comparisons with act f and constant act p, act h is
chosen, then h must be chosen in a binary comparison with a mixture between acts f and p—
intuitively, because this mixture cannot be strictly more attractive than both acts f and p. Again,
this argument does not work in a model with frames.

Proposition 2. Let c(·) have framed ambiguity representation (U ,A ). Then:

(i) Either |A | = 1 and properties β, WARP, Revealed Preference Rationality, γ, Normality, Ambiguity

Aversion, Direct Ambiguity Aversion, Pairwise No-C-Hedging hold for c(·);
(ii) Or |A | > 1 and each of the properties β, WARP, Revealed Preference Rationality, γ, Normality,

Ambiguity Aversion, Direct Ambiguity Aversion, Pairwise No-C-Hedging is violated for c(·).

Statement (i) of Proposition 2 ismore straightforward: when |A | = 1, the framed ambiguitymodel
reduces to the maxmin model of Gilboa and Schmeidler (1989) defined for a choice correspon-
dence. Accordingly, the rationality axioms β,WARP, Revealed Preference Rationality, γ, Normality

hold, and axioms Ambiguity Aversion, Direct Ambiguity Aversion, Pairwise No-C-Hedging that rep-
resent (rational) DM’s attitude toward Knightian and objective uncertainty hold as well.

Statement (ii) of Proposition 2 is more surprising: it says that if there is some ambiguity framing,
the DM’s choice behavior violates all of the axioms discussed in Proposition 2.

Note that if the analyst mistakenly considers the agent’s behavior to be not frame-sensitive, ob-
serving violations of Ambiguity Aversion or Direct Ambiguity Aversion, the analyst can mistak-
enly conclude that the agent likes Knightian uncertainty, and observing a violation of Pairwise
No-C-Hedging, the analyst can mistakenly conclude that the agent exhibits non-linear preference
toward the objective uncertainty.

Finally, by checking Revealed Preference Rationality or Pairwise No-C-Hedging, the analyst can
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verify if the agent is frame-sensitive by observing only choices from binary menus.

4. Connection of Frames and Consistency of Choices
In this section, we analyze framed-ambiguity agents who differ in their ability to recognize that
their perception of uncertainty is subject to framing. Consider an agent (DM 2, he) who is un-
certain regarding the severity of the Global Warming15. One day, he listens to an expert who
says that the probability p of Global Warming being severe is between 20 and 60 percents; the
agent then acts—for instance, trades assets—based on estimate p ∈ [0.2,0.6]. On a different day,
he listens to another expert who says that the relevant probability is between 50 and 75 percents;
this time, the agent acts based on estimate p ∈ [0.5,0.75].

Another agent (DM 1, she) also has access to both estimates, but, in contrast to DM 2, she tries
to connect the two points of view and come up with a more coherent picture of the relevant
uncertainty. One—extreme—way to do this is to pick one of the experts and trust this expert
in any circumstances, disregarding the other expert’s opinion. In Proposition 3, we show that
such agent is more decisive in comparison to DM 2: her choice correspondence is a subset of his.
Moreover, this type of behavior characterizes comparative decisiveness.

The agent may also try to use both estimates. Unable to come up with a Bayesian framework
to connect the two opinions, she may still use reasonable approaches. First, she may admit all
possibilities, and estimate that the Global Warming is severe with probability between 20 and 75
percent; that is, p ∈ [0.2,0.75]= [0.2,0.6]∪[0.5,0.75]16. Second, she may consider only probabil-
ities that are consistent with both estimates; this way, p ∈ [0.5,0.6]= [0.2,0.6]∩[0.5,0.75]. Third,
she may assign each expert a weight17—for instance, 2/3 for the first expert and 1/3 for the second
expert—and find a compromise range of probabilities: p ∈ [0.3,0.65]= 2

3 ·[0.2,0.6]+ 1
3 ·[0.5,0.75].

The way the agent connects the expert’s opinions may be itself subject to framing: one day,
she uses estimate [0.2,0.75], the other day, she uses the range [0.5,0.6], while on a third day,
she is inclined to use a compromise estimate [0.3,0.65]. Moreover, the agent may use any of
these “combined” estimates as a new “opinion”. For instance, she may come up with estimate
p ∈ [0.3,0.6] = [0.2,0.6]∩ [0.3,0.65] = [0.2,0.6]∩ (2

3 · [0.2,0.6]+ 1
3 · [0.5,0.75]

)
. In Theorem 3,

15We follow Crès et al. (2011) using Global Warming as a motivating example.
16When frames are singleton beliefs, this aggregation idea corresponds to Default to Certainty in Gilboa et al. (2010),
and for general sets of beliefs it is analyzed in Crès et al. (2011) and Hill (2011)

17This way of aggregation of sets of beliefs is also considered in Crès et al. (2011) and Hill (2011).
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we show that such agent is more consistent than DM 2: she has a singleton choice whenever
DM 2 does. Moreover, the three considered ways of connecting/aggregating frames (experts’
opinions) characterise comparative consistency—with a nuance that for non-binary state space,
only coherent intersections of sets of beliefs are used.

Below, we formalize the ideas introduced above and characterise the (unobserved) aggregation
of frames in terms of the (observed) comparative choice behavior of agents.

4.1. Decisiveness

We start by considering a natural decisiveness relation.

DEFINITION 4. DM 1 with choice correspondence c1(·) is more decisive than DM 2 with choice

correspondence c2(·) if c1 ⊆ c2.

Thus, we say that DM 1 is more decisive than DM 2 if she chooses among a subset of alterna-
tives that could be chosen by DM 2. Let (A2)coh be the closure of the (non-empty and topologi-
cally closed) family of sets of beliefs A2 with respect to the operation of coherent intersection of
frames—that is, (A2)coh is the minimum family of sets of beliefs that includes A2 and is closed
under taking coherent intersections of its sub-collections.

Theorem 2 and Lemma 28 in the Appendix imply that (A2)coh exists, and it is the maximum
family of frames that represents the choice correspondence induced by the family of frames A2

and a common vNM expected utility function.

Proposition 3. Let c1(·) and c2(·) be represented by (U1,A1) and (U2,A2). Then DM 1 is more

decisive than DM 2 if and only if U1 is a positive affine transformation of U2 and A1 ⊆ (A2)coh.

Thus, Proposition 3 tells us that a more decisive agent is one who starts with the maximum
collection of frames that the other agent may have and drops some of those.

4.2. Consistency

We proceed with a less demanding notion, which compares instances in which agents make the
same choice consistently.

DEFINITION 5. DM 1 with choice correspondence c1(·) is more consistent than DM 2 with choice

correspondence c2(·) if for all A ∈K |c2(A)| = 1 =⇒ |c1(A)| = 1.

If DM 1 is more decisive than DM 2, then c2(A) = { f } =⇒ c1(A) = { f }, hence DM 1 is also more
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consistent than DM 218. Let us now formally define the aggregation concepts discussed in the
Global Warming example.

DEFINITION 6. Given a non-empty closed collection of frames C , its convex union is a set of beliefs

P given by
P = conv

( ⋃
P ′∈C

P ′
)

(3)

Definition 6 describes the aggregation approach in which the agent contemplates a subset of
frames C at a moment and think that any prior in any set of beliefs is possible; the convex hull
is taken because non-convex sets of beliefs—as oppose to non-convex sets of frames—are not
identifiable in our model; this is true as well for the Gilboa and Schmeidler (1989) maxmin model.

The notion of coherent intersection of frames is introduced in Section 2 (Definition 3). Our next
definition formalizes the idea of a weighted average of various opinions.

DEFINITION 7. Given a non-empty finite collection of frames C = {P1, ...,PN }, its convex combina-

tion with respect to weights λ ∈△ ({1, ..., N}) is a set of beliefs P given by

P =
N∑

i=1
λiPi ≡

{
µ ∈△S

∣∣∣ ∃µi ∈ Pi for i = 1, ..., N : µ=
N∑

i=1
λiµi

}
(4)

Finally, we formalize the idea of combining different aggregation approaches.

DEFINITION 8. Let A ⊆ Π be a non-empty closed collection of frames. Then its closure Γ(A )

with respect to the operations of convex union, convex combination and coherent intersection is a

minimum family of frames that satisfies (i) A ⊆ Γ(A ), and (ii) if P is either a convex union, or a

convex combination, or a coherent intersection of a collection of frames C ⊆Γ(A ), then P ∈Γ(A ).

Lemma 20 in Appendix shows that the closure given by Definition 8 exists and is unique. Our
third main result is that, when the number of frames is finite, the three considered operations of
frame connection characterise the comparative consistency:

Theorem 3. Let c1(·) and c2(·) be represented by (U1,A1) and (U2,A2) respectively, and |A2| <∞.

Then the following statements are equivalent:

(i) DM 1 is more consistent than DM 2;

(ii) U1 is a positive affine transformation of U2, and A1 ⊆Γ(A2);

(iii) U1 is a positive affine transformation ofU2, and any P ∈A1 is a coherent intersection of convex

18Note also that comparative consistency and comparative decisiveness are reflexive and transitive binary relations
on the set of framed-ambiguity agents. The latter relation is antisymmetric, but the former is not.
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unions of convex combinations of frames in A2.

If A2 is infinite, we might need to generalize the definition of the convex combination of frames
to work with infinite closed collections of frames19. We conjecture that Theorem 3 remains true
with infinite number of frames as well.

4.3. Identification of Frames from Preference Relation

Ambiguity literature commonly considers the primitive to be a preference relation on the set of
Anscombe-Aumann acts, and not a choice correspondence, as we do. In this section, we analyze
to which extend the analyst can identify the frames from the observed preference relation.

We begin our analysis by showing that data on choices from binarymenus is sufficient to conclude
that one agent is more consistent than another according to Definition 8.

Proposition 4. Let c1(·) and c2(·) satisfy axioms 1–7. Then DM 1 is more consistent than DM 2 if

and only if ∀g,h ∈ H c1({ f , g})⊆ c2({ f , g}).

Thus, DM 1 is more consistent than DM 2 if and only if DM 1 is more decisive than DM 2 on
the set of binary menus. This binary formulation of comparative consistency allows us to use
Theorem 3 to get identification result for the representation of a preference relation.

Formally, model (U ,A ) represents preference relation ⪰ if (U ,A ) represents choice correspon-
dence c(·) such that f ⪰ g ⇐⇒ f ∈ c({ f , g}) ∀ f , g ∈ H. Note that c1(·) = c2(·) for binary menus if
and only if DM 1 is more consistent than DM 2, and DM 2 is more consistent than DM 1; hence:

Corollary 2. Framed ambiguity models (U1,A1) and (U2,A2) with |A1|, |A2| < ∞ represent the

same preference relation if and only ifU2 is a positive affine transformation ofU1 andΓ(A2)=Γ(A1).

Corollary 2 tells us that observing choices only from binary menus leaves a big room for different
representations. Moreover, in contrast to Theorem 2 for choice correspondence, an analyst may
not be able to identify a uniqueminimum collection of frames that represents20 a given preference
relation, which is clear from the following example, illustrated in Figure 1.

Let X = {x, y}, U(p) = p(x), and |S| = 3. Consider priors µ1 = (0.1,0.2,0.7), µ2 = (0.3,0.2,0.5),
19Weights λ generalize to the probability distribution on the appropriately defined sigma-algebra of collections of
frames, and selection of priors µi ∈ Pi generalizes to the measurable selection of priors from the collection.

20Nothing changes for the identification of the vNM expected utility function, since the restriction c0(·) of choice
correspondence on the set K0 of menus consisting of constant acts satisfies WARP.
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µ3 = (0.2,0.3,0.5), µ4 = (0.2,0.1,0.7) and sets of priors P1 = {µ1}, P2 = {µ2}, P3 = conv({µ3,µ4}),
P5 = conv({µ1,µ3,µ4}), P6 = conv({µ2,µ3,µ4}). Let the first family of frames be A1 = {P1,P2,P3},
and the second family beA2 = {P1,P2,P5,P6}. Note that P5 = conv(P1∪P3), P6 = conv(P2∪P3),
and P3 = P5 ∩P6, where the intersection of P5 and P6 is coherent (Lemma 29). Hence, Γ(A1) =
Γ(A2). By Corollary 2, models (U ,A1) and (U ,A2) represent the same preference relation ⪰.
Preference relation ⪰ does not have a representation with minimum subset of frames, since in
all candidate models (U , {P1,P2}), (U , {P1}), (U , {P2}), DM’s belief regarding s = 2 is fixed: µ(2) =
µ1(2)=µ2(2)= 0.2, while the original models allow DM to use priors µ3(2)= 0.3 and µ4(2)= 0.1.
Hence, the candidate models cannot represent ⪰.
By Theorem 2, (U ,A1) and (U ,A2) represent different choice correspondences c1(·) and c2(·).
For example, let f , g ∈ H, p ∈ H0 be as follows: f (x) = (1,0,0), g(x) = (0,1,0), p(x) = 0.15, then
c1({ f , g, p}) = { f , g}, but c2({ f , g, p}) = { f , g, p}, where p is chosen under frame P5 for c2. By
Theorem 2, A1 is the unique family of frames representing c1(·); c2(·) admits two different repre-
sentations: A2 is the minimum family of frames, and (A2)coh =A2∪ {P3} is the maximum family
of frames that represents c2(·).

4.4. Application to Aggregation of Preferences

Our model has a population interpretation: consider a group of people that agree on the ranking
of prizes (share the same utility), are averse to ambiguity, and disagree on beliefs. Suppose people
in this group want to aggregate their judgements such that the resulting rule is rational, respects
the ambiguity aversion, and a natural Unanimity criterion:

DEFINITION 9. Let {⪰i}i=1,...,N and ⪰ be binary relations on H. We say that ⪰ satisfies Unanimity
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with respect to {⪰i}i=1,...,N if for all f , g ∈ H [ f ⪰i g ∀i = 1, ..., N] =⇒ f ⪰ g.

Theorem 3 helps us to characterize such rules:

Corollary 3. Let {⪰i}i=1,...,N and ⪰ be preference relations on H that have Gilboa and Schmeidler

(1989) maxmin representations with the same vNM expected utility function, but different sets of

beliefs {Pi}i=1,...,N and P . Then ⪰ satisfies Unanimity with respect to {⪰i}i=1,...,N if and only if P is

a coherent intersection of convex unions of convex combinations of {P1, ...,PN }.

Note also that, according to Theorem 3, taking arbitrary number of operations of coherent inter-
section, convex union and convex combination of {P1, ...,PN } in any order always produces a set
of beliefs that corresponds to a rule in the desired class.

Aggregation of ambiguity averse opinions in the literature. In Crès et al. (2011), the au-
thors study the aggregation of the opinions of a group of ambiguity-averse experts. They impose
a stronger Expert Uncertainty Aversion axiom. In terms of our result, their aggregation proce-
dure is equivalent to taking convex unions and convex combinations of sets of beliefs, but not
coherent intersections. We show that usage of all three of these operations characterises the ag-
gregation procedure that satisfies the Unanimity criterion. To achieve this result, we use some of
the instruments from the proofs in Crès et al. (2011) and Chandrasekher et al. (2022).

In Hill (2011), the author characterizes the same aggregation rule as Crès et al. (2011) in terms of
the Unanimity criterion plus the requirement that an aggregation rule should remain the same
across all profiles of preferences. In terms of our model, Hill (2011)’s additional requirement rules
out coherent intersections primarily because not all intersections of sets of beliefs are coherent,
hence if a rule includes a coherent intersection, it cannot be applied to all profiles of preferences.

4.5. Optimistic Learning

Consider an agent who contemplates her potential decisions under the various decision frames.
Let she face, for example, a choice between an act f =σ f1+(1−σ) f2 and a constant act x (money).
She figures that under frame 1, she would prefer f1 to x to f2, while under frame 2, f2 to x to f1.
Thinking optimistically, she picks frame 1 to evaluate f1, frame 2 to evaluate f2 and concludes
that act f is better than x.

Our next proposition bounds the beliefs of the rational ambiguity-averse agent (DM 1) who ap-
plies such “optimistic” arguments either to experts’ suggestions—with the interpretation that each
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frame is an expert’s advice—or to her potential frame-susceptible choice behavior (DM-2). For
brevity, we omit the universal qualifiers ∀{ f i}⊂ H,∀p ∈ H0 in statement (i) below.

Proposition 5. Let c2(·) be represented by the framed ambiguity model (U ,A ), and c1(·) be repre-
sented by the Gilboa and Schmeidler (1989) maxmin model with vNM expected utility V and set of

beliefs P . Then the following statements are equivalent:

(i) If f i ∈ c2({ f i, p}) for all i = 1, ..,k, then
∑k

i σi f i ∈ c1

({∑k
i σi f i, p

})
for all convex weights σ.

(ii) V is a positive affine transformation of U , and P ⊆ ⋂
Q∈A

Q ̸=∅.

Proposition 5 says that an ambiguity-averse decision maker who contemplates a set of frames A

and finds “arguments” f i ∈ c2({ f i, p}) to evaluate a mixture ∑k
i σi f i to be at least as good as act p

should consider only priors that lie in the intersection of all frames in A—but not necessary all
these priors. If the intersection of frames in A is empty, this behavior becomes inconsistent with
minimization of expected utility over a set of priors—the agent becomes too optimistic.

Finally, we analyze the case when the reverse implication in statement (i) of Proposition 5 holds
as well—with the nuance that the agent is also capable of applying the C-Independence principle
to guide her decisions. Thus, for instance, the agent chooses act f in comparison to a constant
act p only if she finds a decomposition of the form λ f + (1−λ)q = ∑k

i=1σi f i, where q is some
constant act21 such that each f i can be chosen in comparison to λp+ (1−λ)q under some frame.
We call such way of reasoning optimistic learning and characterize it in our final result; for this
result to hold, it suffices to require one of the two following conditions22.

CONDITION 1. A family of frames A is finite,
⋂

P∈A
P ̸=∅, and each P ∈A is polyhedral.

Condition 1 says, in particular, that each P ∈ A can be expressed via a finite number of linear
inequalities. Equivalently, each P ∈A is a polytope—that is, there are finitely many priors µ ∈ P

that DM uses to evaluate acts under each frame P .

CONDITION 2. A family of frames A is finite, and
⋂

P∈A
ri(P) ̸=∅.

Here, we denote by ri(P) the relative interior of the set P . Intuitively, Condition 2 says that the
intersection of frames does not cause the ambiguity existing in each frame in some dimension
21The reason why we consider a mixture of f with a constant act q is that in our setup, the set of acts H = (△X )S

have extreme points that do not have non-trivial decompositions. If the set of consequences is instead RN , and
the agent’s utility function is linear over consequences, considering this extra mixture is not necessary.

22If we instead demand just that A2 is finite (which would not matter) and has a non-zero intersection, then a
generalized version of the proposition would require consideration of limits of choices made by DM 2.
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to vanish. The following proposition uses results regarding the dual of a sum of convex func-
tions23. To ease notations, we omit the universal quantifiers ∀ f ∈ H,∀p ∈ H0 in statement (i); it
is assumed that p and q are constant acts, f i are general acts, and σi are convex weights.

Proposition 6. Let c2(·) be represented by the framed ambiguitymodel (U ,A ), and either Condition

1 or Condition 2 holds for A . Then the following statements are equivalent:

(i) c1(·) satisfies WARP and Continuity, and f ∈ c1({ f , p}) if and only if there exists a decomposition

λ f + (1−λ)q =∑k
i=1σi f i with λ ∈ (0,1] such that f i ∈ c2({ f i,λp+ (1−λ)q}) for all i = 1, ...,k;

(ii) c1(·) is represented by the Gilboa and Schmeidler (1989) maxmin model with vNM expected

utility function U and set of priors
⋂

Q∈A

Q.

Proposition 6 says that, under a mild technical condition, the agent who perceives the relevant
ambiguity to be the intersection of frames in A is the agent who evaluates an act using its most
favorable decomposition according to the variety of decision frames A .
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Appendix

Proof of Theorem 1

For brevity, we omit the proof that axioms follow from the representation except of the proof for
the Indirect Ambiguity Aversion and Continuity axioms. Assume (U ,A ) represents c(·).
Let h ∈ A, h ̸∈ c(A ∪ { f }), h ̸∈ c(A ∪ {g}), C = {P ∈ A |WP (h) ≥ WP (h′)∀h′ ∈ A}. Then WP (h) <
WP ( f ),WP (g) ∀P ∈C , hence WP (λ f +(1−λ)g)≥λWP ( f )+(1−λ)WP (g)>WP (h) ∀P ∈C . There-
fore, ̸ ∃P ∈ A : WP (h) ≥ WP (h′) ∀h′ ∈ A ∪ {λ f + (1−λ)g}, h ̸∈ c(A ∪ {λ f + (1−λ)g}). Therefore,
Indirect Ambiguity Aversion holds. □
Let (Ak, f k)−→ (A, f ) : f k ∈ c(Ak)∀k = 1,2, ...Then f k ∈ Ak, and ρ({ f }, A)≤ d( f , f k)+ρ({ f k}, A)≤
d( f , f k) + ρ(Ak, A) −→ 0, hence f ∈ cl(A) = A. Since f k ∈ c(Ak) for k = 1,2, ..., ∃Pk ∈ A :
WPk ( f k)≥WPk (h) ∀h ∈ Ak. Since Π is compact, ∃Pkm −→ P ∈Π. Since A is closed, P ∈A . Con-
sider arbitrary g ∈ A; since Akm −→ A, ∃gkm ∈ Akm : gkm −→ g. Then WPkm ( f km) ≥ WPkm (gkm)

∀m. Note that the function ζ :Π×H×H given by

ζ(Q,h,h′)=min
µ∈P

∑
s∈S

µsU( f (s))−min
µ∈P

∑
s∈S

µsU(g(s))

is continuous, hence WP ( f )≥WP (g), and f ∈ c(A). Therefore, Continuity holds. □
Assume now that choice correspondence c(·) satisfies Axioms 1-7. We show that c(·) admits a
framed ambiguity representation. The next lemma is strightforward.

Lemma 1. Continuity (Axiom 6) implies (i) Act Continuity: ∀A ∈K { f ∈ H | f ∈ c(A∪ { f })} is

closed, (ii) Menu Continuity: ∀ f ∈ H {A ∈K | f ∈ c(A)} is closed.

We say that the restriction of choice correspondence c0 on the set of compact menus of constant
acts K0 has an expected utility representation, if there is a vNM expected utility U : △X →
R such that ∀A ∈ K0 [(p, ..., p) ∈ c(A) ⇐⇒ [U(p)≥U(q) ∀q ∈ A]]. Note that if c(·) satisfies
Axioms 1-7, so does c0(·).
Lemma 2. Given Axioms 1-7, c0 has a non-degenerate expected utility representation U that is

unique up to a positive affine transformation. Moreover, f (s) ∈ c( f (s), g(s))⇐⇒U( f (s))≥U(g(s)).
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Proof. Consider binary relation ⪰c0⊆ H0 ×H0 given by p ⪰c0 q if p ∈ c0({p, q}). Axioms α and
C-β implyWARP for c0, thus ⪰c0 is complete and transitive. The C-Independence for c0(·) implies
Independence for ⪰c0 . Act Continuity implies {q ∈ H | p ⪰c0 q} is closed, and Menu Continuity

implies {q ∈ H | p ⪯c0 q} is closed ∀p ∈ H0; these statements imply the Archimedean continuity
of ⪰0. The expected utility representation follows from the Mixture Space Theorem. Since C-

Non-Degeneracy implies p ̸⪰0 q for some p, q, this representation is non-degenerate. The last
assertion follows from the definition of U . □
Lemma 2 allows us to find prizes x∗ and x∗ such that u∗ ≡U(x∗)>U(x∗)≡ u∗, where we abused
notations by identifying prize x with lottery δx. Given menu B, denote by

x(B) = arg max
x∈

{
x
∣∣∃ f ∈B,s∈S: f (s)(x)>0

}
∪{x∗}

U(x), x(B) = arg min
x∈

{
x
∣∣∃ f ∈B,s∈S: f (s)(x)>0

}
∪{x∗}

U(x)

and u(B) =U(x(B)), u(B) =U(x(B)). Note that the set
{
x
∣∣∃ f ∈ B, s ∈ S : f (s)(x) > 0

}
is finite by

the definition of the menu, thus the introduced above quantities are well-defined. We will also
sometimes omit the dependence of x, x, u, u on B when it will not cause confusion.

Lemma 3. If c(·) satisfies Axioms 1-7, then it satisfiesMonotonicity: ∀ f , g ∈ H, ∀A ∈K if f (s) ∈
c({ f (s), g(s)}) ∀s ∈ S then (i) g ∈ c(A) =⇒ f ∈ c(A∪ { f }); (ii) f ∈ A =⇒ c(A)⊆ c(A∪ {g}).

Proof. Let f (s) ∈ c({ f (s), g(s)}) ∀s ∈ S. Then by Lemma 2, U( f (s)) ≥ U(g(s)) ∀s ∈ S. Given
menus A, B, and act f , denote by

A0.5 ≡ 0.5A+0.5 · (0.5x(B)+0.5x(B)), f0.5 ≡ 0.5 f +0.5 · (0.5x(B)+0.5x(B))

Proof of (i). Consider B = A∪{ f } and g ∈ c(A), then by C-Independence, g0.5 ∈ c(A0.5). Consider
f n
0.5 ≡ (1−1/n) f0.5 + (1/n)x for n = 1,2, ... Then ∀s ∈ S we have:

U( f n
0.5(s)) =

(
1− 1

n

)
·
(U( f (s))

2
+ u+u

4

)
+ u

n
≥ U( f (s))

2
+ u−u

4n
> U( f0.5(s))≥U(g0.5(s))

By Lemma 2, g0.5(s) ̸∈ c({g0.5(s), f n
0.5(s)}) ∀s ∈ S. Strict Monotonicity implies g0.5 ̸∈ c({g0.5, f n

0.5}),
then by α, we have g0.5 ̸∈ c(A0.5 ∪ { f n

0.5}). By Aizerman’s Property, f n
0.5 ∈ c({A0.5 ∪ f n

0.5}). Since
f n
0.5 −→ f0.5, by Act Continuity, f0.5 ∈ c(A0.5 ∪ { f0.5}). By C-Independence, f ∈ c(A∪ { f }).

Proof of (ii). Consider B = A ∪ {g}, f ∈ A, and h ∈ c(A). By C-Independence, h0.5 ∈ c(A0.5).
Consider gn

0.5 ≡ (1−1/n) f0.5 + (1/n)x for n = 1,2, .... Then ∀s ∈ S we have:

U(gn
0.5(s)) =

(
1− 1

n

)
·
(U(g(s))

2
+ u+u

4

)
+ u

n
≤ U(g(s))

2
− u−u

4n
< U(g0.5(s)) ≤ U( f0.5(s))

By Lemma 2, gn
0.5(s) ̸∈ c({gn

0.5(s), f0.5(s)}) for all s ∈ S, by Strict Monotonicity, gn
0.5 ̸∈ c({gn

0.5, f0.5}),
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by α, we have gn
0.5 ̸∈ c(A0.5 ∪ {gn

0.5}). By Aizerman’s Property, h0.5 ∈ c(A0.5 ∪ {gn
0.5}). Next,

A0.5 ∪ {gn
0.5} −→ A0.5 ∪ {g0.5}, hence by Menu Continuity, h0.5 ∈ c(A0.5 ∪ {g0.5}). Finally, by C-

Independence, h ∈ c(A∪ {g}). □
Let us show that it is without loss of generality to focus on acts with a binary set of prizes {x∗, x∗}.

Lemma 4. If Axioms 1-7 hold for c(·), then ∀A ∈K ∀ f ∈ A, f ∈ c(A)⇐⇒ TA( f ) ∈ c(TA(A)), where

TA( f ) = (αsx∗ + (1−αs)x∗)s∈S , αs = λ(A) ·U( f (s))+ (1−λ(A)) · (0.5u∗+0.5u∗)−u∗
u∗−u∗

, λ(A) =

0.1 ·min
{

1,
u∗−u∗

|u(A)−0.5u∗−0.5u∗|
,

u∗−u∗
|u(A)−0.5u∗−0.5u∗|

}
, and TA(B)= {TA(g)|g ∈ B}.

Proof. First, note that λ ∈ [0,0.1], and αs ∈ [0.4,0.6], thus TA( f ) is a well-defined act, and TA(A)

is a set of acts. SinceU(·) is continuous, so does TA ; hence, since A is compact, Tλ(A) is compact
as well. Note also that acts in TA(A) yield only two prizes. Therefore, TA(A) is a menu.

Denote by f ⪰∗ g if U( f (s))≥U(g(s)), and f ∼ g if [ f ⪰∗ g and g ⪰∗ f ].

Claim 1. Let g ∈ B, h ∼ g. If g ∈ c(B), c(B∪ {h})= c(B)∪ {h}; if g ̸∈ c(B), then c(B∪ {h})= c(B).

Proof of Claim 1. Let g ∈ c(B). If h ̸∈ c(B∪ {h}), by Aizerman’s Property, g ∈ c(B∪ {h}), and by
Monotonicity, h ∈ c(B∪ {h}). Since g ⪰∗ h, by Monotonicity, c(B) ⊆ c(B∪ {h}). By α, c(B∪ {h}) =
c(B)∪ {h}. Let g ̸∈ c(B). If h ∈ c(B∪ {h}), then by Monotonicity, g ∈ c(B∪ {h}), and by α, g ∈ c(B),
contradiction. Hence, h ̸∈ c(B∪ {h}), and by Aizerman’s Property and α, c(B∪ {h})= c(B). □
Claim 2. Let {h1, ...,hk}⊂ H. Assume ∀i ∈ {1, ...,k} ∃g i ∈ A: g i ∼ hi. Then:

c(A∪ {h1, ...,hk}) = c(A)∪{
h ∈ {h1, ...,hk}

∣∣ ∃g ∈ c(A) : h ∼ g
}

Proof of Claim 2. Let us use the induction in k = 0,1, ... When k = 0, the statement c(A)= c(A)

is true. For the induction step, if hk+1 ∼ g for g ∈ A, then the statement follows from Claim 1
and the induction hypothesis. If hk+1 ∼ hi for i ∈ {1, ...,k}, then by the induction hypothesis and
transitivity of ∼, there is g i ∈ A such that hk+1 ∼ g i and the same argument applies. □

Since A is compact, ∃Fn: Fn ⊆ A ⊆ ⋃
f ∈Fn

{g ∈ H| d(g, f )< 1/n}. Denote by Fn ≡
n⋃

m=1
Fm.

Claim 3. (i) Fn ∪TA(A)−→ A∪TA(A), (ii) A∪TA(Fn) −→ A∪TA(A).

Proof of Claim 3. Statement (i) is straightforward. Next, note that for any s ∈ S, the mapping
f →U( f (s)) is uniformly continuous on A, since U(·) is linear, u(A) ≤U( f (s)) ≤ u(A), and A is
compact. It follows that f → TA( f ) is uniformly continuous on A, implying

ρ(A∪TA(Fn), A∪TA(A)) = max
h∈A∪TA(A)

min
g∈A∪TA(Fn)

d(g,h) ≤ max
h∈TA(A)

min
g∈TA(Fn)

d(g,h) −→ 0 □
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Denote by gλ =λ(A)g+(1−λ(A))(0.5x∗+0.5x∗) and Aλ =λ(A)A+(1−λ(A))(0.5x∗+0.5x∗). By
construction, U(gλ(s))=U(TA(g)(s)) for all s ∈ S, hence gλ ∼ TA(g) for all g ∈ A.

Assume f ∈ c(A). By C-Independence, fλ ∈ c(Aλ). WLOG, f ∈ F1 ⊆ Fn. By Claim 2, fλ ∈ c(Aλ∪
TA(Fn)). By Claim 3 and Menu Continuity, fλ ∈ c(Aλ∪TA(A)). By Monotonicity, TA( f ) ∈ c(Aλ∪
TA(A)). By α, TA( f ) ∈ c(TA(A)).

Assume TA( f ) ∈ c(TA(A)). WLOG, f ∈ F1 ⊆ Fn. By Claim 2, TA( f ) ∈ c(TA(A)∪Fn
λ

). By Claim
3 and Menu Continuity, TA( f ) ∈ c(TA(A)∪ Aλ). By Monotonicity, fλ ∈ c(TA(A)∪ Aλ). By α,
fλ ∈ c(Aλ). By C-Independence, f ∈ c(A), proving Lemma 4. □
We say that a framed ambiguity model (U ,A ) represents c(·) on the set of menus K if for any
menu B ∈K , c(B) is given by eq. (1), (2).

Lemma 5. A framed ambiguity model (U ,A ) represents c(·) on K if and only if (U ,A ) represents

c(·) on the set of menus K ∗ consisting of acts that yield only prizes x∗, x∗.

Proof. One direction is trivial. Assume now that (U ,A ) represents c(·) on K ∗. Then Axioms
1-7 hold for the choice correspondence ĉ induced by (U ,A ) according to eq. (1), (2). Note that
ĉ(B)= c(B) for all B ∈K ∗. Therefore, by Lemma 4, f ∈ ĉ(A)⇐⇒ TA( f ) ∈ ĉ(TA(A))⇐⇒ TA( f ) ∈
c(TA(A))⇐⇒ f ∈ c(A). Hence, ĉ = c, proving the other direction. □
By Lemma 5, WLOG, X = {x∗, x∗}, U(x∗)= 1, U(x∗)= 0. In this case, the set of acts H is isomor-
phic to the hypercube [0,1]S . We will use notations z, f for general acts and H = [0,1]S . Denote
by ι= (1, ...,1) ∈ RS , then act z ∈ [0,1]S is constant if and only if z= zι for some z ∈ [0,1].

Lemma 6. Let X = {x∗, x∗} and let Menu Continuity hold. Then ∀ f ∈ H,∀A ∈K if f ∈ c(A), then

∃D ∈K :
[
A ⊆ D, f ∈ c(D), and if [D′ ∈K , D′ ̸= D, and D ⊆ D′], then f ̸∈ c(D′)

]
.

Proof. Consider the set of menusQ(A, f ) ≡ {B ∈K | f ∈ c(B) and A ⊆ B} partially ordered by set
inclusion. Let T ⊆ Q(A, f ) be an arbitrary non-empty totally ordered set. Let C = cl (

⋃
B∈T B).

Note that C is compact since it is a closed subset of the compact set H. Therefore, for any ϵ> 0,
there is a finite set { f i}i∈{1,...,N} ⊆ C such that ∀h ∈ C d( f i,h) < ϵ/3 for some f i = f i(h). Next, by
the definition of C, for any i ∈ {1, ..., N}, there is Bi ∈C and g i ∈ Bi such that d(g i, f i)< ϵ/3. Since
T is totally ordered by set inclusion, there is B̃ ∈ {B1, ...,BN } such that Bi ⊆ B̃ for all i = {1, ..., N}.
Since B̃ ⊆ C, it follows

ρ(B̃,C) = sup
h∈C

(
inf
g∈B̃

d(g,h)

)
≤ sup

h∈C

(
d(g i, f i(h))+d( f i(h),h)

) ≤ ϵ/3+ϵ/3< ϵ
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Consider sequence ϵ−→ 0, and the associated menus B̃ϵ ∈ T with ρ(B̃ϵ,C) < ϵ. Since f ∈ c(B̃ϵ),
B̃ϵ −→ C, and C ∈ K , by Menu Continuity, f ∈ c(A). Thus, every non-empty totally ordered
subset T of Q(A, f ) has an upper bound C ∈Q(A, f ). Note also that A ∈Q(A, f ) ̸=∅. By Zorn’s
Lemma, Q(A, f ) has at least one maximal element D. □
Given λ ∈ [0,1], let fλ = λ f + (1−λ)0.5ι, Bλ = λB+ (1−λ)0.5ι. For f ∈ H0.2, let L ( f ) ≡ {

A ∈
K | f ∈ c(A) and [A ⊆ A′ and f ∈ c(A′) =⇒ A′ = A]

}
. Since f ∈ c({ f }), by Lemma 6, L ( f ) ̸=∅.

For A ∈L ( f ), denote by
a(A)=max {b ∈ [0,1] | b · ι ∈ A} (5)

Since A is compact and 0ι ∈ A, by Monotonicity, a(A) is well-defined; moreover, 0.4 ≤ a(A) ≤
since f ∈ H0.2. Denote by |z| =maxs∈S |zs|, for v ∈RS : ∑

s∈S vs = 0 and |v| = 1, define

JA(v)=−max {b ∈R | a(A) · ι+0.1 ·v+0.1b · ι ∈ A} (6)

Monotonicity, Strict Monotonicity and maximality of A ∈ L ( f ) imply that JA(v) ∈ [−1,1]. For
z ∈RS , denote by z = |S|−1 ·∑s∈S(z)s, z⊥ = z− z · ι. Define I :RS →R by

IA(z) ≡

 z + |z⊥| · JA

(
z⊥
|z⊥|

)
if z⊥ ̸= 0

z if z⊥ = 0
(7)

The following lemma is an analogue of Lemma 3.3. in Gilboa and Schmeidler (1989).

Lemma 7. Let Axioms 1-7 hold. Then ∀ f ∈ H0.2 ∀A ∈L ( f ):

(a.i): ∀z ∈ H0.4 z ∈ A ⇐⇒ IA(z)≤ a(A);

(a.ii): IA( f )= a(A);

(b.i): IA(·) is monotone: z≥ z′ =⇒ IA(z)≥ IA(z′);

(b.ii): IA(·) is positively homogeneous: IA(αz) = αIA(z) for all α≥ 0;

(b.iii): IA(·) is concave: IA(λz+ (1−λ)z′)≥λIA(z)+ (1−λ)IA(z′) for all λ ∈ (0,1);

(b.iv): IA(·) is C-additive: IA(z+β · ι)= IA(z)+ IA(β · ι) for all β ∈R;
(b.v): IA(·) is normalized: IA(ι)= 1.

Proof. Statements (b.ii), (b.iv), and (b.v) hold by the definition of I . Let us prove (a.i). Consider
arbitrary z ∈ H0.4 = [0.3,0.7]S . If z⊥ = 0, z ∈ A ⇐⇒ IA(z) ≤ a(A) by the definition of a(A). If
|z⊥| = 0.1, z ∈ A ⇐⇒ IA(z) ≤ a(A) by the definition of J. If z− a(A) > |z⊥|, then z >> (a(A)+
0.5(z−a(A)−|z⊥|))ι>> a(A)ι. Thus f ̸∈ c(A∪ {(a(A)+0.5(z−a(A)−|z⊥|))ι}) by the definition of
a(A), and byMonotonicity, f ̸∈ c(A∪{z}), implying z ̸∈ A. Also, IA(z)≥ z−|z⊥| > a(A), hence, z ∈
A ⇐⇒ IA(z)≤ a(A). If z−a(A)<−|z⊥|, then z≤ a(A)ι ∈ A. Hence, f ∈ c(A∪{z}) byMonotonicity,
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and z ∈ A by maximality of A. Also, IA(z)≤ z+|z⊥| ≤ a(A), thus z ∈ A ⇐⇒ IA(z)≤ a(A).

Consider the last case |z⊥| ̸= 0,0.1 and |z− a(A)| ≤ |z⊥|. Let y = (
a(A)+ 0.1z−0.1a(A)

|z⊥|
)
ι+0.1 z⊥

|z⊥| .
Note that y ∈ H0.2 ⊂ H, |y⊥| = 0.1, and y+bι ∈ A ⇐⇒ IA(z)≤ a(A)−b for b ∈ [−0.1,0.1].

Suppose |z⊥| < 0.1, then z = λy+ (1−λ)a(A) · ι, where λ = 10|z⊥| ∈ (0,1). Let IA(z) ≤ a(A),
then {y,a(A) · ι} ⊆ A, and by No C-Hedging, f ∈ c(A ∪ {z}), thus z ∈ A by maximality of A. Let
IA(z) > a(A), consider ϵ = 0.01min

{
1, 1−λ

λ
, IA(z)−a(A)

λ

}
> 0, then y− ϵι,

(
a(A)+ λ

1−λϵ
)
ι ∈ H\A.

By maximality of A, f ̸∈ c(A ∪ {y− ϵι}), f ̸∈ c
(
A∪{(

a(A)+ λ
1−λϵ

)
ι
})
. Since z = λ(y− ϵι)+ (1−

λ)
(
a(A)+ λ

1−λϵ
)
ι, by Indirect Ambiguity Aversion, f ̸∈ c(A∪ {z}), hence z ̸∈ A.

Suppose |z⊥| > 0.1, then y = λz+(1−λ)a(A)·ι, where λ= (10|z⊥|)−1 ∈ (0,1). Let z ∈ A, then byNo
C-Hedging, f ∈ c(A∪{y}), hence y ∈ A by maximality of A, and IA(z)≤ a(A). Let z ̸∈ A; since A is
closed, and z ∈ H0.4, ∃ϵ> 0: z−ϵ · ι,(a(A)+ λ

1−λϵ
)
ι ∈ H\A. By maximality of A, f ̸∈ c(A∪ {z−ϵι})

and f ̸∈ c
(
A∪{(

a(A)+ λ
1−λϵ

)
ι
})
. Since y = λ(z−ϵι)+(1−λ)

(
a(A)+ λ

1−λϵ
)
ι, by Indirect Ambiguity

Aversion, f ̸∈ c(A∪ {y}), hence y ̸∈ A, and IA(z)> a(A), proving (a.i).

Let us prove (a.ii). If IA( f )> a(A), by (a.i), f ̸∈ A, contradicting f = c(A). If IA( f )< a(A), ∃ϵ> 0:
f̂ = (1−ϵ) f +ϵι>> f , IA( f̂ )< a(A). Hence, f̂ ∈ A. By α, f ∈ c({ f , f̂ }), violating Strict Monotonicity.

Let us prove (b.i). If z = z′ = 0, IA(z) = 0 ≥ 0 = IA(z′). Otherwise, let t = 0.01 · (max{|z|, |z′|})−1,
z̃ = tz+ (a(A)− IA(tz)) ι, w = tz′+ (a(A)− IA(tz)) ι. Then IA(z̃)= a(A), w≤ z̃, and z̃,w ∈ H0.4.
Hence, z̃ ∈ A, by Monotonicity, f ∈ c(A∪ {w}), by maximility of A, w ∈ A, hence by (a), IA(w) ≤
a(A)= IA(z̃). By (b.ii), (b.iv), (b.v), IA(z)≥ IA(z′).

Let us prove (b.iii). If z = z′ = 0, IA(λz+ (1−λ)z′) = 0 = λIA(z)+ (1−λ)IA(z′). Otherwise, let
t = 0.01 · (max{|z|, |z′|})−1, z̃ = tz+ (a(A)− IA (tz)) ι, q = tz′+ (

a(A)− IA
(
tz′)) ι. Let ϵ= 0.001,

then z̃,q ∈ H0.4; by (a), z̃,q ̸∈ A, thus, f ̸∈ c(A∪{z̃+ϵι}) and f ̸∈ c(A∪{z̃′+ϵι}); by Indirect Ambiguity

Aversion, f ̸∈ c(A∪ {λ(z̃+ ϵι)+ (1−λ)(q+ ϵι)}). By convexity of H0.4, maximality of A, and other
proven statements, λ(z̃+ϵι)+ (1−λ)(q+ϵι) ∈ H0.4\A =⇒ IA(λ(z̃+ϵι)+ (1−λ)(q+ϵι))> a(A)=⇒
IA(λz̃+(1−λ)q)≥ a(A)=⇒ IA

(
λ [tz+ (a(A)− IA (tz)) ι]+ (1−λ)

[
tz′+ (

a(A)− IA
(
tz′)) ι])≥ a(A)

=⇒ IA
(
λtz+ (1−λ)tz′)≥λIA (tz)+(1−λ)IA

(
tz′)=⇒ IA

(
λz+ (1−λ)z′)≥λIA (z)+(1−λ)IA

(
z′),

proving that I is concave. □
Lemma 8. Let I be the set of monotone positively homogeneous concave constant additive and nor-

malized functions I : RS →R, and Π be the set of non-empty convex and closed sets of probabilities

P ⊆△S. Then the mapping τ : I →Π given by τ(I) =
{
µ ∈△S

∣∣∣ ∑
s∈S

µ(s)zs ≥ I(z) ∀z ∈RS
}
is a
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bijection, and τ−1(P)(z)≡min
µ∈P

∑
s∈S

µ(s)zs. Moreover, Wτ(IA)( f )= IA( f ) ∀ f ∈ H.

Proof. This is a well-known statement. The details are given in the Online Appendix. □
Lemma 9. If Axioms 1-7 hold for c(·), then (U , cl(A )) represents c(·), whereU is defined by Lemma

2, and A = {
τ(IB)

∣∣ f ∈ H0.2,B ∈L ( f )
}
.

Proof. Let f ∈ c(A), then f0.1 ∈ c(A0.1). By Lemma 6, ∃B ∈ L ( f0.1) : A0.1 ⊆ B. By Lemmas 7,8,
IB( f0.1)= a(B)≥ IB(g0.1)=⇒Wτ(IB)( f )= IB( f )≥ IB(g)=Wτ(IB)(g) ∀g ∈ A. Finally, τ(IB) ∈A .

Let P ∈ A and let WP (g) ≥ WP (h) ∀h ∈ A. Then WP (g0.1) ≥ WP (h0.1) ∀h0.1 ∈ A0.1. Hence, ∃ f ∈
H0.2 ∃B ∈L ( f ) : P = τ(IB). Therefore, IB(g0.1) ≥ IB(h0.1) ∀h0.1 ∈ A0.1. Denote by λ= 5

4 (a(B)−
0.2g0.1); since 0.4 ≤ a(B) ≤ 0.6, 0.45 ≤ g0.1 ≤ 0.55, then λ ∈ [0.3625,0.6375]. For h ∈ A, let
ĥ = 0.2g0.1+0.8λι; for ϵ ∈ (0,0.1), let ĝϵ = 0.2g0.1+0.8(λ+ϵ)ι. Then IB(ĥ)≤ IB( ĝ)= a(B)< IB( ĝϵ)

∀h ∈ A ∀ϵ ∈ (0,1). Hence, ĝϵ ̸∈ B; by maximality of B, f ̸∈ c(B∪ { ĝϵ}); by Aizerman’s Property,
ĝϵ ∈ c(B∪{ ĝϵ}); by Act Continuity, ĝ ∈ c(B∪{ ĝ})= c(B). By maximality of B, 0.2A0.1+0.8λι⊆ B;
by α, ĝ ∈ c(0.2A0.1 +0.8λι); by C-Independence, g0.1 ∈ c(A0.1), g ∈ c(A).

Claim 4. If P ∈ cl(A )\A and WP (g)≥WP (h) ∀h ∈ A, then g ∈ c(A).

Proof of Claim 4. Consider Pk −→ P , Pk ∈ A . Let gn
0.1 = (

1− 1
n
)

g0.1 + 1
n ι, then WP (gn

0.1) >
WP (g0.1) ≥ WP (h0.1) ∀h ∈ A. By continuity of W , WPk(n)(gn

0.1) ≥ WP (h0.1) ∀h ∈ A for k(n) large
enough. By the proof in the paragraph above, gn

0.1 ∈ c(A0.1 ∪ {gn
0.1}). By Act Continuity, g0.1 ∈

c(A0.1 ∪ {g0.1})= c(A0.1). By C-Independence, g ∈ c(A), proving the Claim and the Lemma. □
Lemmas 5, 9 prove the “if” direction of the Theorem. ■

Proof of Proposition 1

For each of the axioms, we give examples when the corresponding axiom is violated, while other
axioms hold. For brevity, the proofs that other axioms hold are omitted; an interested reader can
find them in the Online Appendix.

Framed Uncertainty. Let {x, y, z}⊆ X . Consider

c(A) =
{

f ∈ A
∣∣∣ ∑

s∈S
f (s)(x)≥ ∑

s∈S
g(s)(x) ∀g ∈ A or

∑
s∈S

f (s)(y)≥ ∑
s∈S

g(s)(y) ∀g ∈ A
}

Since c({x,0.5x+0.5y})= {x,0.5x+0.5y} and c({x,0.5x+0.5y, y})= {x, y}, C-β, and, hence, Framed

Uncertainty is violated. Other axioms hold; in particular, z ̸∈ c({x, z}), so C-Non-Degeneracy holds.
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C-Independence. Let {x, y} ⊆ X , c(A) = arg max
f ∈A

W( f ), where W( f ) = f (1)(x)+ f (2)(x)
1+ f (2)(x)

. Let f =
(0.4x+0.6y, y, ...) and g = (y, x, ...). Then W( f ) = 0.4 < 0.5 = W(g), hence c({ f , g}) = {g}. Next,
consider f ′ = 0.5 f +0.5x = (0.7x+0.3y,0.5x+0.5y, ...) and g′ = 0.5g+0.5x = (0.5x+0.5y, x, ...).
Then W( f ′) = 1.2/1.5 = 4/5 > 3/4 = 1.5/2.0 = W(g′), hence c(0.5{ f , g}+0.5{p}) = { f ′} = {0.5 f +
0.5p}, contradicting C-Independence. Other axioms hold.

No-C-Hedging. Let x ∈ X , 0<µ≤µ≤ 1. Consider c(B)= ⋃
k∈[0,∞)

arg max
f ∈B

Wk( f ), where

Wk( f )=min
{
(1−µ) f (1)(x)+µ f (2)(x), (1−µ) f (1)(x)+µ f (2)(x), f (1)(x)+µk

}
Consider f , g ∈ H, p ∈ H0 with f (1)(x) = 0.2, f (2)(x) = 0.3, g(1)(x) = 0.2, g(2)(x) = 1, p(x) =
0.2+0.1µ. Then Wk( f )= 0.2+µ ·min{0.1,k}, Wk(g)= 0.2+µ ·min{1,k}, Wk(p)= 0.2+µ ·0.1, and
Wk(0.5g+0.5p) = 0.2+µ ·min{0.45,k+0.05} > Wk( f ). Hence, k = 0.1 justifies the choice of f

from the menu A = { f , g, p}, but f is not the best in the menu A∪{0.5g+0.5p} for any k ∈ [0,∞).
Thus, No-C-Hedging fails. Other axioms hold.

Strict Monotonicity. Let x ∈ X , c(A) = arg max
f ∈A

W( f ), W( f ) = 2 f (1)(x) − f (2)(x). Consider

f , g ∈ H with f (1)(x) = f (2)(x) = 0.3, g(1)(x) = 0.4, g(2)(x) = 0.7. Then W( f ) = W( f (1)) =
W( f (2)) = 0.3, and W(g) = 0.1, W(g(1)) = 0.4, W(g(2)) = 0.7. Hence, the pair f , g violates Strict
Monotonicity. Other axioms hold.

Indirect Ambiguity Aversion. Let x ∈ X , c(A) = arg max
f ∈A

W( f ), W( f ) = max{ f (1)(x), f (2)(x)}.

Consider h ∈ H0, f , g ∈ H with h(x) = 0.7, f (1)(x) = 1, f (2)(x) = 0, g(1)(x) = 0, g(2)(x) = 1,
and A = {h}. Then h ̸∈ c(A ∪ { f }), h ̸∈ c(A ∪ {g}), but h ∈ c(A ∪ {0.5 f +0.5g}), violating Indirect

Ambiguity Aversion. Other axioms hold.

Continuity. Let x ∈ X , c(A) = { f ∈ A| f ⪰ g ∀g ∈ A}, where f ⪰ g if either f (1)(x) > g(1)(x), or
[ f (1)(x)= g(1)(x) and f (2)(x)≥ g(2)(x)]. Consider f , g, fn ∈ H, n = 1,2, .. with g(1)(x)= g(2)(x)=
0.5, fn(1)(x) = 0.5+1/n, fn(2)(x) = 0, f = limn→∞ fn (pick fn such that the limit exists). Then
fn ∈ c({ fn, g}), but f ̸∈ c({ f , g}), violating Continuity. Other axioms hold.

C-Non-Degeneracy. Consider c(A)= A; C-Non-Degeneracy fails, and other axioms hold. ■

Proof of Theorem 2

By Lemma 2, U is unique up to the positive affine transformation. By Lemma 5, WLOG, X =
{x∗, x∗}; normalizing U(x∗)= 1, U(x∗)= 0, we get H = [0,1]S , WP (z)= τ−1(P)(z) (by Lemma 8).
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Lemma 10. If (U ,A ′) represents c(·), then A ⊆A ′, where A = {
τ(IB)

∣∣ f ∈ H0.2,B ∈L ( f )
}
.

Proof. Consider arbitrary f ∈ H0.2, A ∈ L ( f ). Let C ′ = {P ′ ∈ A ′|A ⊆ B(P ′)}, where B(P ′) =
{z ∈ H|τ−1(P ′)( f ) ≥ τ−1(P ′)(z)}. Since f ∈ c(A), then C ′ ̸= ∅. If B(P ′) ̸= A for P ′ ∈ C ′, then
f ∈ c(B(P ′)) (note that B(P ′) is closed, hence B(P ′) ∈ K ), contradicting maximality of A. Thus,
B(P ′) = A for all P ′ ∈ C ′, and τ−1(P ′)( f ) = a(A) = IA( f ). Consider arbitrary z ∈RS . If z = 0,
then IA(z) = 0 = τ−1(P ′)(z). Otherwise, w = 0.1 z

|z| +0.5ι ∈ H0.2, and w+0.4bι ∈ H ∀b ∈ [−1,1].
Also, w−0.4ι << 0.4ι ≤ a(A)ι ≤ 0.6ι << w+0.4ι. Then IA(w−0.4ι),τ−1(P ′)(w−0.4ι) < a(A) <
IA(w+0.4ι),τ−1(P ′)(w+0.4ι). Moreover, since B(P ′)= A, IA(w+0.4bι)≥ a(A) ⇐⇒ τ−1(P ′)(w+
0.4bι) ≥ a(A) ∀b ∈ [−1,1]. Therefore, ∃b ∈ [−1,1]: IA(w+0.4bι) = a(A) = τ−1(P ′)(w+0.4bι).
Thus, IA(z)= τ−1(P ′)(z) ∀z ∈RS , hence τ(IA)= P ′ ∈A ′. □
Consider any representation (U ,A ′). By Lemma 10, cl(A )⊆ cl(A ′)=A ′; by Lemma 9, (U , cl(A ))

represents c(·). Hence, cl(A ) is the minimum family of frames. Let B =
{
P ∈ Π

∣∣∣∀A ∈ K ∀ f ∈
A

[
WP ( f ) ≥ WP (g)∀g ∈ A =⇒ f ∈ c(A)

]}
. By argument identical to the one used in the proof

of Claim 4, we get cl(B) = B, hence (U ,B) is a framed ambiguity model; let c′′ be its induced
choice correspondence. Since cl(A ) ∈ cl(B) = B, then c ⊆ c′′; by the definition of B we also
have c′′ ⊆ c and A ′ ∈B. Therefore, B is the maximum family of frames. Next, let D be a closed
family of frames such that cl(A ) ⊆ D ⊆ B, and let c′ be the choice correspondence represented
by (U ,D). Then c ⊆ c′ ⊆ c′′ = c, hence c′ = c, proving Theorem 2 except of the last statement.

Lemma 11. There exists a coherent intersection P of a family C if and only if

IP (z) = max
P ′∈C

IP ′(z) ∀z ∈RS, where IQ(z) = τ−1(Q)(z) = min
µ∈Q

∑
s∈S

µ(s) · zs

Proof. Let P be a coherent intersection of C . For an arbitrary z ∈RS , let t be its component
orthogonal to (1, ...,1). If t = 0, IP̃ (z) does not depend on P̃ . Otherwise, the projections of P

and C on the linear subspace Tt = {x ∈RS | ∃λ ∈R : x = λt} are an interval [at(P),bt(P)] and
a collection of intervals

{
[at(P ′),bt(P ′)]

}
P ′∈C . Then, WLOG, IP ′(t) = at(P ′) for all P ′ ∈ C ∪P .

Since P is a coherent intersection, then [at(P),bt(P)] = ⋂
P ′∈C

[at(P ′),bt(P ′)] ̸=∅. It follows that

IP (z)−
S∑

i=1
zs = IP (t) = at(P) = max

P ′∈C
at(P ′) = max

P ′∈C
IP ′(t) = max

P ′∈C
IP ′(t)−

S∑
i=1

zs

proving the only if direction of Lemma 11.

Claim 5. (i) P ⊆ P ′ if and only if IP (z) ≥ IP ′(z) for all z ∈RS , (ii) P ⊊ P ′ if and only if IP (z) ≥
IP ′(z) for all z ∈RS and ∃ẑ ∈RS : IP (ẑ)> IP ′(ẑ).
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Proof Claim 5. The claim follows from Lemma 8. □
Claim 6. If IP (z)=max

P ′∈C
IP ′(z) for all z ∈RS , then P =⋂

P ′∈C P ′ ̸=∅.

Proof Claim 6. Since ∀P ′ ∈ C , IP (z) =max
P ′∈C

IP ′(z) ≥ IP ′(z)∀z ∈RS , by Claim 5, P ⊆ P ′ for all

P ′ ∈C , hence P ⊆⋂
P ′∈C P ′ ̸=∅. If P ̸= P̃ =⋂

P ′∈C P ′, then by Claim 5, ∃z ∈RS : IP (z) > IP̃ (z) ≥
max
P ′∈C

IP ′(z), in contradiction. □

Claim 7. For any linear subspace T of RS , pro jT
(⋂

P ′∈C P ′
)
⊆⋂

P ′∈C pro jT(P ′).

Proof Claim 7. If x̂ ∈ pro jT
(⋂

P ′∈C P ′
)
, then ∃x ∈ P : x̂ = pro jT(x). Hence, x ∈ P ′ for all P ′ ∈C

and x̂ ∈⋂
P ′∈C pro jT(P ′). □

Assume IP (z)=max
P ′∈C

IP ′(z). Towards a contradiction, assume pro jT
(⋂

P ′∈C P ′
)
⊊⋂

P ′∈C pro jT(P ′)

for some linear subspace T. By the Separating Hyperplane Theorem applied to the closed con-
vex set P̂ = pro jT

(⋂
P ′∈C P ′

)
and point µ̂ ∈⋂

P ′∈C pro jT(P ′)\P̂ ̸=∅, there is a vector t̂ ∈T∗ =T
such thatminν̂∈P̂

∑
i t̂iν̂(i)>∑

i t̂iµ̂(i)≥maxP̂ ′∈pro jT(C ) minν̂∈P̂
∑

i t̂iν̂(i). Since θt̂ :RS →R given
by θt̂(z) =∑

i t̂i
(
pro jT(z)

)
i is a linear function, there is t ∈RS such that θt̂(z) =∑

s∈S tszs; then,
IP (z)<max

P ′∈C
IP ′(z), in contradiction. Lemma 11 is proven. □

Suppose that P is a coherent intersection of a closed collection C ⊆A , where A is the minimum
family of frames. Consider arbitrary A ∈K and f ∈ A such that WP ( f )≥WP (g) for all g ∈ A. By
Lemma 11, there is P̃ ∈C such that WP̃ ( f )=WP ( f )≥WP (g)=max

P ′∈C
WP ′(g)≥WP̃ (g) for all g ∈ A.

Since P̃ ∈A , f ∈ c(A); hence, P ∈B, where B is the maximum family of frames.

Conversely, suppose P ∈B; thus, [WP ( f )≥WP (g)∀g ∈ A =⇒ f ∈ c(A)]. Let

V = {
v ∈RS∣∣ ∑

s∈S
vs = 0,max

s∈S
|vs| = 1

}
, B = {

z ∈ H
∣∣WP (z)≥ 0.5

}
, zv = (0.5−0.01WP (v)ι)+0.01v

for v ∈ V . Note that zv ∈ H and WP (zv) = 0.5. Hence, zv ∈ B, and ∀v ∈ V∃Pv ∈ A such that
WPv(zv)≥WPv(z)∀z ∈ B. Since o.5ι ∈ B, WPv(zv)≥WPv(0.5ι)= 0.5. Towards a contradiction, as-
sume WPv(zv)> 0.5. Consider g = (0.5−0.02WP (v))+0.02v ∈ H; since WP (g)= 0.5, g ∈ B. How-
ever, zv = 0.5g+0.5 ·0.5ι, hence WPv(zv)= 0.5WPv(g)+0.25, and WPv(g)=WPv(zv)+ (WPv(zv)−
0.5) > WPv(zv), contradicting the definition of Pv. Therefore, WPv(zv) = 0.5 ≥ WPv(zv′) for all
v,v′ ∈ V . Since WP̃ is positively homogeneous, and WP̃ (0.5ι) = 0.5 for all P̃ ∈Π, for any z ∈RS

there exists P z ∈ A such that WP (z) = WP z (z), and WP (z′) ≥ WP z (z′) for all z′ ∈RS ; denote by
C z ̸=∅ the collection of all frames in A that has this property, and let C =⋃

z∈Z C z. Then

WP (z)=max
P ′∈C

WP ′(z) ∀z ∈RS
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Since WP̃ is continuous with respect to P̃ , cl(C ) = C . Therefore, P is the coherent intersection
of a closed collection of frames C ⊆A , where A is the minimum family of frames, proving the
last assersion of the Theorem. ■

Proof of Proposition 2

The proof that |A | = 1 implies all of the considered properties is straightforward and omitted.
Assume |A | > 1. Then there are P1,P2 ∈A , f ∈ H, and q1, q2 ∈ H0 such that U(q1) =WP1( f ) >
WP2( f ) =U(q2). Note that c({q2, f }) = {q2, f }, but c({q1, q2, f }) = {q1, f }, thus β is violated, and,
therefore, WARP is violated.

Consider g = 0.25q1 +0.75q2, h = 0.5 f +0.5g = 0.5 f +0.125q1 +0.375q2, w = 0.5 f +0.25q1 +
0.25q2. Then WP1( f ) > WP1(w) > WP1(h) > WP1(g) and WP2(g) = WP2(w) > WP2(h) > WP2( f ).
Hence, f , g ∈ c({ f , g,w,0.5 f +0.5g}). Since w >> h, h ̸∈ c({ f , g,w,0.5 f +0.5g}), violating Ambi-

guity Aversion. Considering A = {w} shows the violation of Direct Ambiguity Aversion as well.

Consider p = 0.5q1 +0.5q2 ∈ H0. Since WP2(h) > WP2( f ), h ∈ c({h, f }). Since WP1(h) > WP1(p),
h ∈ c({h, p}). Since 0.5 f +0.5p = w >> h, h ̸∈ c({h,0.5 f +0.5p}), violating Pairwise No-C-Hedging.

Towards a contradiction, assume Normality holds. Let f ,h ∈ H, p ∈ H0, λ ∈ (0,1) be such that
h ∈ c({h, f }) and h ∈ c({h, p}). By Normality, h ∈ c({h, f , p}), by No-C-Hedging, h ∈ c({h, f , p,λ f +
(1−λ)p}), by α, h ∈ c({h,λ f + (1−λ)p}); thus, Pairwise No-C-Hedging holds, in contradiction.
Finally, α and γ are equivalent to Normality, hence γ is violated as well. ■

Proof of Proposition 3

If U1 is a positive affine transformation of U2 and A1 ⊆ (A2)coh, then for all B ∈K we have

c1(B) = ⋃
P∈A1

arg max
f ∈B

WP ( f ) ⊆ ⋃
P∈(A2)coh

arg max
f ∈B

WP ( f ) = c2(B)

Hence, DM 1 is more decisive than DM 2. Conversely, assume DM 1 is more decisive than DM 2.

Lemma 12. Let c1 and c2 have framed ambiguity representations (U1,A1) amd (U2,A2). Assume

that for all f , g ∈ H we have c2({ f , g}) = { f } =⇒ c1({ f , g}) = { f }. Then U1 and U2 are positive

affine transformations of each other.

Proof. Since U2 is nondegenerate, ∃x, y ∈ △X : U2(x) > U2(y); then c2({x, y}) = {x}, c1({x, y}) =
{x}, and U1(x) > U1(y). Similarly, ∀p, q ∈ △X , if U2(p) > U2(q), then U1(p) > U1(q). Suppose
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now U2(p)=U2(q). Let

α= 0.01 · (max{|U2(p)|, |U2(y)|,1}
)−1, β= 0.5[U2(x)−U2(y)]−α(U2(p)−U2(y))

(1−α)(U2(x)−U2(y))
then α,β ∈ (0,1). For γ ∈ (0,1), define pαγ = αp+ (1−α)(βx+ (1−β)y), qαγ = αq+ (1−α)(βx+
(1−β)y), then for ϵ > 0 small enough, β− ϵ,β+ ϵ ∈ (0,1), and U2(pα

β−ϵ) < 0.5U2(x)+0.5U2(y) <
U2(qα

β+ϵ). It follows U1(pα
β−ϵ) < 0.5U1(x)+0.5U1(y) <U1(qα

β+ϵ). By continuity of U1, U1(pα
β
) =

U1(qα
β
), which implies U1(p) =U1(q). Hence, U2 and U1 represent the same linear preferences

on △X , and they are positive affine transformations of each other. □
By Lemma 12, WLOG, U1 =U2. Since P ∈A1 =⇒ [ f ∈ A,WP ( f ) ≥WP (g)∀g ∈ A =⇒ f ∈ c(A)],
then by Theorem 2, P ∈ (A2)coh. ■

Proof of Theorem 3

Throughout the proof IP (·)= τ−1(P)(·) is the support functional of set of beliefs P defined in (8).
We’ll first prove the supporting lemmas, and then (i)=⇒ (iii)=⇒ (ii)=⇒ (i).

For a fixed (up to a positive affine transformation) vNM expected utility function U and P ∈Π,
let WP be the associated maxmin expected utility function and f ⪰P g iff WP ( f )≥WP (g); f ≻P g

iff f ⪰P g and g ̸⪰P f .

Lemma 13. Let c1(·) and c2(·) have framed ambiguity representations (U1,A1) and (U2,A2). Then

the following statements are equivalent:

(i) For all A ∈K |c2(A)| = 1 =⇒ |c1(A)| = 1;

(ii) For all A ∈K and f ∈ H c2(A)= { f } =⇒ c1(A)= { f };

(iii) For all f , g ∈ H c2({ f , g})= { f } =⇒ c1({ f , g})= { f };

(iv) U1 is a positive affine transformation of U2, and [ f ⪰P g ∀P ∈A2] =⇒ [ f ⪰P g ∀P ∈A1];

(v) U1 is a positive affine transformation of U2, and [ f ≻P g ∀P ∈A2] =⇒ [ f ≻P g ∀P ∈A1].

Proof. Implications (ii) =⇒ (i), (iii) are straightforward. Let (iii) hold. Towards a contradiction,
assume c2(A) = { f }, and g ∈ c1(A)\{ f }. If g ∈ c2({g, f }), ∃P ∈A2 such that WP (g) ≥ WP ( f ), then
{ f } ̸= arg maxh∈AWP (h) and c2(A) ̸= { f }. Thus, c2{g, f } = { f }. By α, g ∈ c1({g, f }), contradicting
(iii). Since c1(A) ̸=∅, c1(A)= { f }. Hence, (iii)=⇒ (ii). Now, let us prove that (i) implies (iii).

Towards a contradiction, assume c2({ f , g}) = { f }, but c1({ f , g}) = {g} for some f , g ∈ H. Since U1

is non-degenerate, ∃p, q: U1(p)>U1(q). Let f̂ = 0.5 f +0.25p+0.25q, ĝ = 0.5g+0.25p+0.25q.
By C-Independence, c2({ f̂ , ĝ}) = { f̂ }, c1({ f̂ , ĝ}) = { ĝ}. Given P ∈ Π, let W1

P and W2
P are maxmin
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expected utility functions associated with U1 and U2. Denote by ϵ1 = infP∈A1

(
W1

P ( ĝ)−W1
P ( f̂ )

)
,

ϵ2 = infP∈A2

(
W2

P ( f̂ )−W2
P ( ĝ)

)
. Note that W1, W2 are continuous in P , hence, W1

P ( f )−W1
P (g)

and W2
P ( f )−W2

P (g) are uniformly continuous in P on compact sets A1 and A2. Therefore, since
W1

P ( ĝ)−W1
P ( f̂ )> 0 ∀P ∈A1 andW2

P ( f̂ )−W2
P ( ĝ)> 0∀P ∈A2, then ϵ1,ϵ2 > 0. For δ ∈ (0,1), consider

A = {
0.5g+0.5(1−δ)(0.5p+0.5q)+0.5δh

∣∣∃λ ∈ [0,1]S : h(s)=λs p+ (1−λs)q
}

Since ϵ1,ϵ2 > 0, ∃δ > 0: W1
P ( f̂ ) < W1

P (h)∀h ∈ A∀P ∈ A1, W2
P ( f̂ ) > W2

P (h)∀h ∈ A∀P ∈ A2. Let
Q ∈ A1 ̸= ∅ and B = {h ∈ A|W1

Q(h) = W1
Q( ĝ)}. Since ĝ ∈ B and |S| > 1 then |B| > 1. Hence,

|c1(B∪ { f̂ })| = |B| > 1 and |c2(B∪ { f̂ })| = |{ f }| = 1, contradicting (i); hence, (i)=⇒ (iii).

Let (iii) hold, then by Lemma 12, U1 is a positive affine transformation of U2. Next, [ f ⪰P g ∀P ∈
A2] ⇐⇒ [c2({ f , g}) = { f }] =⇒ [c1({ f , g}) = { f }] ⇐⇒ [ f ≻P g ∀P ∈ A1]. Hence, (v) holds. Con-
versely, suppose (v) holds, then [c2({ f , g}) = { f }] ⇐⇒ [ f ⪰P g ∀P ∈ A2] =⇒ [ f ≻P g ∀P ∈
A1]⇐⇒ [c1({ f , g})= { f }], proving (iii). Hence, (iii)⇐⇒(v)

Let (v) hold. WLOG, U1 = U2 = U ; let p, q be such that U(p) > U(q). Denote by f̂ n = 0.5 f +
0.5(1−1/n)(0.5p+0.5q)+(0.5/n)p, f̂ = 0.5 f +0.5(0.5p+0.5q), ĝ = 0.5g+0.5(0.5p+0.5q). Since
U( f̂ n(s)) = U( f̂ (s))+ (U(p)−U(q))/4n > U( f̂ n(s)) ∀s ∈ S, and WP (h) = 0.5WP (h)+0.25U(p)+
0.25U(q), then [ f ⪰P g ∀P ∈ A2] =⇒ [ f̂ ⪰P ĝ ∀P ∈ A2] =⇒ [ f̂ n ≻P ĝ ∀P ∈ A2] =⇒ [ f̂ n ≻P

ĝ ∀P ∈A1]. Since WP (·) is continuous, [ f̂ ⪰P ĝ ∀P ∈A1] and [ f ⪰P g ∀P ∈A1], proving (iv).

Let (iv) hold. Assume [ f ≻P g ∀P ∈ A2]. Note the function ζ : Π×H ×H given by ζ(P, f , g) =
WP ( f )−WP (g) is uniformly continuous on the compact setA2×H×H. Therefore, ∃ϵ> 0: WP ( f )>
WP (g)+ 2ϵ ∀P ∈ A2. Using f̂ , ĝ defined in the paragraph above, we get WP ( f̂ ) > WP ( ĝ)+ ϵ

∀P ∈ A2. Let f̂γ = 0.5 f +0.5(1−γ)(0.5p+0.5q)+0.5γq, then for γ > 0 small enough, WP ( f̂ ) >
WP ( f̂γ)>WP ( f̂ )−ϵ/2>WP ( ĝ) ∀P ∈A2. By (iv) and the fact that U1( f̂ (s))>U1( f̂γ(s)) ∀s ∈ S, we
have WP ( f̂ )>WP ( f̂γ)≥WP ( ĝ) ∀P ∈A1. Therefore, WP ( f )>WP (g) ∀P ∈A1, proving (iv)=⇒ (v).

Since (iv)⇐⇒(v) ⇐⇒(iii)=⇒ (ii)=⇒ (i)=⇒ (iii), all statements of Lemma 13 are equivalent. □

The following lemma is closely related to lemmas 1-7 in Crès et al. (2011). The difference is that⪰P

does not satisfy EUA axiom from Crès et al. (2011) with respect to ⪰Pi , but only the Unanimity
axiom. We also borrowed some of the ideas of proofs from their lemmas 1-7. Let X = {x, y},
U(x)= 1, U(y)=−1, H = [−1,1]S ; denote by WP ( f )=minµ∈P

∑
s∈S fsµ(s) for f ∈RS .

Lemma 14. Let X = {x, y}, U(x) = 1, U(y) =−1, H = [−1,1]S ⊂RS , D = {P1, ...,PN } ⊂Π, P ∈Π,
and [WPi ( f ) ≥ WPi (g) ∀i = 1, ..., N] =⇒ WP ( f ) ≥ WP (g) for all f , g ∈ H. Denote by W( f ) =
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(WP1( f ), ...,WPN ( f )), Q = W(H) ⊂RN , cone(Q) = {
t ∈RN ∣∣∃t̃ ∈Q and γ ≥ 0 : t = γt̃

}
and define

functions φ : cone(Q)→R and ψ :RN →R by

φ(t) = γWP ( f ) for some γ> 0, f ∈ H such that W( f )= γ−1t

ψ(t) = inf
{
φ(t′)

∣∣t′ ∈ cone(Q) and t′ ≥ t
}

where t′ ≥ t denotes t′i ≥ ti for i = 1, ..., N . Then:

(a.i) Functions φ and ψ are well-defined;

(a.ii) WP ( f )=ψ(W( f )) for all f ∈RS ;

(b.i) Function ψ is positively homogeneous: ψ(λt)=λψ(t) for all λ≥ 0;

(b.ii) Function ψ is monotone: t ≥ t′ =⇒ ψ(t)≥ψ(t′);

(b.iii) Function ψ is C-additive: ψ(t+β · (1, ...,1))=ψ(t)+ψ(β · (1, ...,1)) for all β ∈R;
(b.iv) Function ψ is normalized: ψ(1, ...,1)= 1.

Proof. Denote by e = (1, ...,1) ∈RN , ι= (1, ...,1) ∈RS .

Let t ∈ cone(Q) then ∃γ> 0, t̂ ∈Q, and f ∈ H such that t = γt̂ andW( f )= t̂ = γ−1t. Suppose g ∈ H,
δ > 0 are such that W(g) = δ−1t. WLOG, δ ≤ γ, hence (δ/γ)g ∈ H, and by positive homogeneity
of W, W((δ/γ)g)= γ−1t =W( f ). Since W( f )≥W((δ/γ)g) and W((δ/γ)g)≥W( f ) (according to the
partial order in RN ), then WP ( f )≥WP ((δ/γ)g) and WP ((δ/γ)g)≥WP ( f ); therefore, WP ((δ/γ)g)=
WP ( f ). Hence, φ(t) = δWP (g) = δ · (γ/δ)WP ( f ) = γWP ( f ). Therefore, the value of φ is the same
for arbitrary pairs γ > 0, f ∈ H and δ > 0, g ∈ H, proving that φ is well-defined. Since W(ι) = e,
W(−ι) = −e, then αe ∈ cone(Q) for all α ∈ R. Since (mini ti) · e ≤ t ≤ (maxi ti) · e, then ψ is
well-defined as well, proving (a.i).

Claim 8. Function φ is positively homogeneous, monotone, C-additive and normalized.

Proof of Claim 8. Consider δ ∈ [0,1]; let f ∈ H, γ> 0 be such that W( f )= γ−1t for t ∈ cone(Q).
Then δ f ∈ H, and W(δ f ) = δW( f ) = γ−1δt, hence φ(δt) = γWP (δ f ) = γδWP ( f ) = δφ(t); this
suffices to show positive homogeneity of φ.

Let r, t ∈Q and r ≥ t. Then ∃ f , g ∈ H: W( f )= r,W(g)= t. Since r ≥ t, φ(r)= 1·WP ( f )≥ 1·WP (g)=
φ(t). Hence, φ is monotone onQ. Let r, t ∈ cone(Q). Since u ∈Q =⇒ βu ∈Q ∀β ∈ [0,1] (follows
from positive homogeneity of W(·) and H = [−1,1]S), then ∃δ> 0 such that δr,δt ∈Q. Since φ is
positively homogeneous, φ(r)= δ−1φ(δr)≥ δ−1φ(δt)=φ(t), hence φ is monotone on cone(Q).

Since W(ι)= e then φ(e)= 1 ·WP (ι)= 1, hence φ is normalized.
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Let t, t+βe ∈ cone(Q), where β ∈R. Then ∃γ> 0, f ∈ H: W( f )= γt. For small enough δ> 0, δ f +
δγ−1βι ∈ H, then W(δ f +δγ−1βι)= δW( f )+δγ−1βe = γ−1(δt+δβe) and φ(δt+δβe)= γWP (δ f +
δγ−1βι)= δγWP ( f )+δβ= δ(φ(t)+β)= δ(φ(t)+φ(βe)). Since φ is positively homogeneous, φ(t+
βe)=φ(t)+φ(βe), hence φ is C-additive, proving Claim 8. □
Let γ > 0, t ∈ RS . Using Claim 8, ψ(γt) = inf

{
φ(t′)

∣∣t′ ∈ cone(Q) and t′ ≥ γt
} = inf

{
φ(t′)

∣∣t′ ∈
cone(Q) and γ−1t′ ≥ t

} = inf
{
φ(t′)

∣∣γ−1t′ ∈ cone(Q) and γ−1t′ ≥ t
} = inf

{
φ(γt′′)

∣∣t′′ ∈ cone(Q)

and t′′ ≥ t
} = inf

{
γφ(t′′)

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
} = γ · inf

{
φ(t′′)

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
} =

γψ(t). Thus, ψ is positive homogeneous, proving (b.i).

Let t′ ≥ t, then
{
t′′ ∈ cone(Q)

∣∣t′′ ≥ t′
}⊆ {

t′′ ∈ cone(Q)
∣∣t′′ ≥ t

}
, hence ψ(t′)≥ψ(t), proving (b.ii).

Claim 9. For all t ∈ cone(Q), ψ(t)=φ(t).

Proof of Claim 9. [t′ ≥ t =⇒ φ(t′)≥φ(t)] =⇒ ψ(t)≥φ(t); t ∈ cone(Q) =⇒ ψ(t)≤φ(t). □
Using Claims 8,9, ψ(e)=φ(e)= 1, proving (b.iv).

Claim 10. If t ∈ cone(Q), then t+βe ∈ cone(Q) for all β ∈R.
Proof of Claim 10. It is enough to consider β ̸= 0. Since t ∈ cone(Q), ∃γ> 0, f ∈ H: t = γW( f ).
For small enough δ> 0, δ f +δγ−1βι ∈ H, hence t+βe = δ−1γW(δ f +δγ−1βι) ∈ cone(Q). □
Using Claim 10, we getψ(t+βe)= inf

{
φ(t′)

∣∣t′ ∈ cone(Q) and t′ ≥ t+βe
}= inf

{
φ(t′)

∣∣t′ ∈ cone(Q)

and t′ − βe ≥ t
} = inf

{
φ(t′)

∣∣t′ − βe ∈ cone(Q) and t′ − βe ≥ t
} = inf

{
φ(t′′ + βe)

∣∣t′′ ∈ cone(Q)

and t′′ ≥ t
} = inf

{
φ(t′′)+β

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
} = inf

{
φ(t′′)

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
}+β =

ψ(t)+β=ψ(t)+βψ(e)=ψ(t)+ψ(βe), proving (b.iii).

Let f ∈RS , then δ f ∈ H for some δ > 0. Using Claim 9 and (b.i), we get WP ( f ) = δ−1WP (δ f ) =
δ−1φ(W(δ f ))= δ−1ψ(W(δ f ))= δ−1ψ(δW( f ))=ψ(W( f )), proving (a.ii). Lemma 14 is proven. □
We next use results from Chandrasekher et al. (2022).

Lemma 15. Let function ψ : RN →R be positively homogeneous, monotone, C-additive and nor-

malized, then there is a non-empty compact collection Θ of non-empty compact and convex sets of

weights Λ⊆△({1, ..., N}) such that for all t ∈RN

ψ(t) = max
Λ∈Θ

min
λ∈Λ

N∑
i=1

λi ti (8)

Proof. The statement of this Lemma is equation 19 in Appendix B1 on page 29 of Chandrasekher
et al. (2022). □
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Lemma 16. If c(·) has a framed ambiguity representation with finite number of frames, then any

framed ambiguity representation of c(·) has a finite number of frames.

Proof. Follows from Theorem 2, since |A | <∞ =⇒ | (A )coh | ≤ 2|A | <∞. □
Lemma 17. If P is a convex union of C (eq. (3)), then P ∈Π and IP (z)= min

P ′∈C
IP ′(z) ∀z ∈RS .

Proof. Note that P is non-empty and convex. Let µn ∈ ⋃
P ′∈C

P ′ be such that µn −→ µ ∈Π. Then
∀n = 1,2, ... ∃Pn ∈ C : µn ∈ Pn. Since C is compact, ∃Pnk −→ P ′ ∈ C . Thus, ∃µ̂nk ∈ P ′ for
k = 1,2, ... such that |µ̂nk −µnk | −→ 0. Therefore, |µ̂nk −µ| ≤ |µ̂nk −µnk |+|µnk −µ|→ 0. Since P ′ is
closed, µ̂nk −→ µ ∈ P ′. Thus, the set P̃ = ⋃

P ′∈C
P ′ is closed. Therefore, its convex hull P is closed

(by Corollary 5.33 of Aliprantis and Border (2005)), and P ∈Π. Finally,
IP (z) = min

µ∈conv(P̃)

∑
s∈S

µ(s)zs = min
µ∈P̃

∑
s∈S

µ(s)zs = min
P ′∈C

min
µ∈P ′

∑
s∈S

µ(s)zs = min
P ′∈C

IP ′(z) □

Lemma 18. Let C = {P1, ...,PN }⊆Π, λ ∈△({1, ..., N}). Then:

(i) If P is a convex combination ofC with respect to λ (eq. (4)), then P ∈Π and IP (z)=∑N
i=1λi IPi (z);

(ii) Function ζ : △({1, ..., N})→Π given by ζ(λ)=∑N
i=1λiPi is continuous.

Proof. Note that P is non-empty. Let µn ∈ P for n = 1,2, ..., and µn −→ µ. Then ∃µn
i : µn

i ∈ Pi

∀n = 1,2, ... ∀i = 1, ..., N and µn =∑N
i=1λiµ

n
i ∀n = 1,2, .... Since N <∞, ∃µnk , µi ∈ Pi, i = 1, ..., N:

µ
nk
i −→ µi ∀i = 1, ..., N . Then µ = lim

k→∞
µnk = lim

k→∞
∑N

i=1λiµ
nk
i = ∑N

i=1λiµi, hence µ ∈ P , and

P is closed. If µ,µ′ ∈ P , then there are µi,µ′
i ∈ Pi for i = 1, ..., N such that µ = ∑N

i=1λiµi and
µ′ =∑N

i=1λiµ
′
i. Since each Pi is convex, ρµi+(1−ρ)µ′

i ∈ Pi for all ρ ∈ (0,1), hence ρµ+(1−ρ)µ′ =∑N
i=1λi(ρµi + (1−ρ)µ′

i), and P is convex. Finally, to prove statement (i),

IP (z)=min
µ∈P

∑
s∈S

µ(s)zs = min
µi∈Pi ∀i=1,...,N

∑
s∈S

N∑
i=1

λiµi(s)zs =
N∑

i=1
λi

(
min
µi∈Pi

∑
s∈S

µi(s)zs

)
=

N∑
i=1

λi IPi (z)

Let µ ∈ ∑N
i=1λiPi, then ∃µi ∈ Pi: µ = ∑N

i=1λiµi. Consider µ′ = ∑N
i=1λ

′
iµi ∈ ∑N

i=1λ
′
iPi. Then

µ−µ′ =∑N
i=1(λi−λ′

i)µi −→ 0when λ′ −→λ. Similarly,∀µ′ ∈∑N
i=1λ

′
iPi ∃µ ∈∑N

i=1λiPi: µ′−µ−→ 0

when λ′ −→λ. Therefore, λ′ −→λ implies ∑N
i=1λ

′
iPi −→∑N

i=1λiPi, proving (ii). □
The next lemma mirrors Proposition 1 in Crès et al. (2011):

Lemma 19. Let Λ⊆△(1, ..., N) be a non-empty closed and convex set of weights, then

WP (z) = min
λ∈Λ

N∑
i=1

λiWPi (z) ∀z ∈RS iff P =
{
µ ∈△S

∣∣∣ ∃λ ∈Λ and µi ∈ Pi : µ=
N∑

i=1
λiµi

}
(9)
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Proof. Let P =
{
µ ∈ △S

∣∣∣ ∃λ ∈ Λ and µi ∈ Pi : µ = ∑N
i=1λiµi

}
. For an arbitrary z ∈ RS let

µ∗
i ∈ arg min

µ∈Pi

(µ ·z) ̸=∅ and λ∗ = arg min
λ∈Λ

∑N
i=1λiWPi (z) ̸=∅; the latter minimum exists because

by Lemma 18 (ii), the convex combination of sets of beliefs is continuous in weights λ, and Λ is
compact. Then µ∗ =∑N

i=1λ
∗
i µ

∗
i ∈ P , and WP (z)≤µ∗ ·z=∑N

i=1λ
∗
i µ

∗
i ·z=min

λ∈Λ
∑N

i=1λiWPi (z).

Conversely, let µ∗∗ ∈ arg min
µ∈P

µ ·z. Then ∃λ∗∗ ∈Λ, µ∗∗
i ∈ Pi: µ = ∑N

i=1λ
∗∗µ∗

i , and WP (z) = µ∗∗ ·

z = ∑N
i=1λ

∗∗
i µ∗∗

i ·z ≥ ∑N
i=1λ

∗∗
i WPi (z) ≥min

λ∈Λ
∑N

i=1λiWPi (z). Hence, WP (z) = min
λ∈Λ

∑N
i=1λiWPi (z),

proving the “if” direction of the Lemma. The “only if” direction follows from Lemma 8. □
Lemma 20. (i) For any non-empty collection of sets of beliefs A ⊆Π its closure Γ(A ) with respect

to operations of convex union, coherent intersection and convex combination given by Definition 8

exists and unique; (ii) for any any non-empty collection of sets of beliefs A ,B: (ii.a) A ⊆ B =⇒
Γ(A )⊆Γ(B); (ii.b) Γ(Γ(A ))=Γ(A ).

Proof. Let F be the set of collections of sets of beliefs F that satisfy condition (i) and (ii) of the
Definition 8. Note that Π ∈ F ̸=∅. Then there exists Γ(A ) = ∩

F∈F
F and it is unique, proving (i).

Next, ifA ⊆B, then Γ(B) is closed under the three considered operations, and it containsA ⊆B,
hence Γ(A ) ⊆ Γ(B), proving (ii.a). Since Γ(A ) is closed under the three considered operations
and it contains itself, then Γ(Γ(A ))=Γ(A ), proving (ii.b). □
Lemma 21. Let vNM expected utility function U(·) be fixed, and ∅ ̸= D ⊆ Π. If P ∈ Γ(D), then

[ f ≻P ′ g ∀P ′ ∈D
]
implies f ≻P g.

Proof. Let E ⊆ Γ(D) be the collection of all sets of beliefs P ∈ Γ(D) such that
[
f ≻P ′ g ∀P ′ ∈D

]
implies f ≻P g. Note that ∅ ̸= D ⊆ E . Let f and g be such that f ≻P ′ g ∀P ′ ∈ D. Take arbitrary
closed sub-collection C ⊆ E . If it intersects coherently, and its intersection is P , by Lemma 11,
WP ( f ) = maxQ∈C WQ( f ) ≥ WQ∗( f ) > WQ∗(g) = maxQ∈C WQ(g) = WP (g), where Q∗ maximizes
WQ(g) over C ⊆ E (exists since C is compact), and WQ∗( f ) > WQ∗(g) by the definition of E ;
hence, f ≻P g and P ∈ E .

If P is a convex union of C , then by Lemma 17, WP ( f ) = minQ∈C WQ( f ) =WQ∗∗( f ) >WQ∗∗(g) ≥
minQ∈C WQ(g) = WP (g), where Q∗∗ minimizes WQ( f ) over C ⊆ E ; hence, f ≻P g and P ∈ E .
Finally, ifC = {Q1, ...,QN } is finite, and P is a convex combination of frames inC with weights λ,
then by Lemma 18, WP ( f ) = ∑N

i=1λiWQ i ( f ) > ∑N
i=1λiWQ i (g) = WP (g), where we used WQ i ( f ) >

WQ i (g) since Q i ∈ C ⊆ E . Again, f ≻ g and P ∈ E . Therefore, Γ(E ) = E , and Γ(D) ⊆ Γ(E ) ⊆
Γ(Γ(D))=Γ(D), which implies E =Γ(D), proving the Lemma. □
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Wenowprove the statements of the Theorem. Suppose first that DM1 ismore consistent thanDM
2. By Lemma 13 ((i)=⇒ (iv)),U1 is a positive affine transformation ofU2, and [ f ⪰P g ∀P ∈A2] =⇒
[ f ⪰P g ∀P ∈A1]. By Lemma 5, it isWLOG to consider X = {x, y}. NormalizeU(x)= 1,U(y)=−1,
and consider P ∈A1, then by Lemma 14, WP ( f )=ψ(W( f )) for all f , where ψ is positively homo-
geneous, monotone, C-additive and normalized. Therefore, by Lemma 15, there is a non-empty
compact collection Θ of non-empty compact and convex sets of weights Λ ⊆△({1, ..., N}) such

that for all t ∈RN , ψ(t)=max
Λ∈Θ

min
λ∈Λ

N∑
i=1

λi ti. Hence, for all f ∈RS ,

WP ( f ) = max
Λ∈Θ

(
min
λ∈Λ

( N∑
i=1

λiWPi ( f )
))

= max
Λ∈Θ

WPΛ( f )

where PΛ =
{
µ ∈ △S

∣∣∣ ∃λ ∈Λ and µi ∈ Pi : µ = ∑N
i=1λiµi

}
and we used Lemma 19. Therefore,

by Lemma 11, Θ is compact, and P is a coherent intersection of the collection of sets of beliefs
{PΛ}Λ∈Θ. By Lemmas 17, 18, each PΛ is a convex union of the family {Pλ}λ∈Λ, and each Pλ is a
convex combination of Pi with weights λ. Hence, statement (i) of the Theorem implies (iii).

The implication (iii) =⇒ (ii) is straightforward: each of the three operations results in a set of
beliefs in Γ(A2) by the definition of Γ(·). Finally, assume statement (ii) holds. By Lemma 21,
[ f ≻P ′ g ∀P ′ ∈D

]
implies f ≻P g for all P ∈ A1 ⊆ Γ(A2). Therefore, by Lemma 13 ((v) =⇒ (i)),

DM 1 is more consistent than DM 2. Thus, (i)=⇒ (iii)=⇒ (ii)=⇒ (i), proving the Theorem. ■

Proof of Proposition 4

Proposition 4 is proven in Lemma 13 ((i)⇐⇒(iii)). ■

Proof of Corollary 2

Suppose ⪰1=⪰2; that is, c1({ f , g})= c2({ f , g}) for all f , g ∈ H. By Lemma 13 ((iii)=⇒ (i)), DM 1 is
more consistent than DM 2, and vice versa, DM 2 is more consistent than DM 1. By Theorem 3,
U2 is a positive affine transformation of U1, A1 ⊆Γ(A2), A2 ⊆Γ(A1), hence Γ(A2)=Γ(A1).

Suppose U2 is a positive affine transformation of U1 and Γ(A2)= Γ(A1). By Theorem 3, DM 1 is
more consistent than DM 2, and vice versa, DM 2 is more consistent than DM 1. By Lemma 13
((i)=⇒ (iii)), c1({ f , g})= c2({ f , g}) for all f , g ∈ H, hence ≻1=⪰2. ■
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Proof of Corollary 3

Consider DM 2 whose choices are represented by the framed ambiguity model (U , {Pi}i=1,...,N),
where U(·) is a common vNM expected utility function, and DM 1 with choice correspondence
c1(·) represented by (U , {P}). These models are well-defined, sinceU(·) is non-degenerate because
of non-degeneracy of ⪰i, ⪰, and families of frames are finite and, hence, closed. Therefore, by
Lemma 13 ((i)⇐⇒(iv)), ⪰ satisfies Unanimity with respect to (U , {Pi}i=1,...,N) if and only if DM 1
is more consistent than DM 2, which is equivalent to {P}⊆Γ({P1, ...,PN }) by Theorem 3. ■

Proof of Proposition 5

Suppose (ii) holds, then without loss, U1 =U2. Suppose f i ∈ c2({ f i, p}) ∀i = 1, ...,k, then

WP

( k∑
i=1

σi f i

)
≥

k∑
i=1

σiWP ( f i) ≥
k∑

i=1
σi ·max

Q∈A2
WQ( f i) ≥

k∑
i=1

σi ·U(p) = U(p)

where we used the concavity of the maxmin expected utility, and the fact that max
Q∈A2

WQ( f i) ≤
µ ·U( f (i)) for all µ ∈ P ⊆ ⋂

Q∈A2

Q. Hence, ∑k
i=1σi f i ∈ c1

({∑k
i=1σi f i, p

})
, proving (i).

Lemma 22. If statement (i) of Proposition 5 holds, thenU1 is a positive affine transformation ofU2.

Proof. Note that U2(p) ≥U2(q) ⇐⇒ p ∈ c2({p, q}) =⇒ p ∈ c1({p, q}) =⇒ U1(p) ≥U1(q). Since
U1 is non-degenerate, ∃x, y ∈ X : U1(x) > U1(y); this implies U2(x) > U2(y). Normalize both U1

andU2 such thatU1(x)=U2(x)= 1,U1(y)=U2(y)= 0. IfU2(p)=λ−1 > 1, thenU2(λp+(1−λ)y)=
U2(x) = 1 =⇒ U1(λp+ (1−λ)y) = U2(x) = 1. Hence, U1(p) = λ−1 = U2(p). Similar analysis for
U2(p) ∈ [0,1] and U2(p)< 0 shows that U1(p)=U2(p) for all p ∈△X . □
Lemma 23. IfA is a non-empty compact family of non-empty compact sets of beliefs, then

⋂
Q∈A

Q ̸=
∅ if and only if

⋂
Q∈C

Q ̸=∅ ∀C ⊆A : 1≤ |C | <∞.

Proof. Since △S has the Heine-Borel property, if A has a finite intersection property, then⋂
Q∈A

Q ̸=∅. The other direction is trivial. The Online Appendix provides a direct proof. □

Let statement (i) of Proposition 5 holds; by Lemma 22, WLOG,U1 =U2. Towards a contradiction,
assume ∃µ ∈

(
P1\

⋂
Q∈A2

Q
)
̸=∅. Since A = A2 ∪ {{µ}} is compact, and {µ}∩

( ⋂
Q∈A2

Q
)
=∅, then by

Lemma 23, there is a finite sub-family {K1, ...,KN }⊂A such that
N⋂

i=1
K i =∅; we may assume that

K1 = {µ}, and K2, ...,KN ∈A2 without loss. We next use a proposition from Samet (1998):
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Lemma 24. Let K1, ...,KN ∈ Π, then
N⋂

i=1
K i =∅ if and only if ∃z1, ..., zN ∈RS :

∑N
i=1 zi = 0, and

zi ·µi > 0 ∀µi ∈ K i∀i = 1, ..., N .

Proof. See Samet (1998) □
By Lemma 24, ∃z1, ..., zN ∈RS : −z1 =∑N

i=2 zi, −z1·µ< 0, andminν∈K i (ν·zi)≥ 0 for all i = 2, ..., N .
Dividing all zi by the same positive number does not change the conclusion, hence |zi| ≤ 0.1

without loss. WLOG, U1(x) = U2(x) = 1, U1(y) = U2(y) = 0 for some x, y ∈ X . Consider acts f i,
i = 2, ..., N given by f i(s) = (

0.5+ (zi)s
)
x+ (

0.5− (zi)s
)
y, and note that the act g =∑N

i=2
1

N−1 f i is
given by g(s)= (

0.5−(z1)s/(N−1)
)
x+(

0.5+(z1)s/(N−1)
)
y. Therefore, WK i ( f i)≥ 0.5=U2(0.5x+

0.5y) for all i = 2, ..., N , and WP (g) ≤ 0.5+ (−z1 ·µ)/(N −1) < 0.5 = U1(0.5x+0.5y). It follows
f i ∈ c2({ f i,0.5x+0.5y}) for all i = 2, ..., N , but g ̸∈ c1({g,0.5x+0.5y}). This contradiction proves
the implication (i)=⇒ (ii). ■

Proof of Proposition 6

Lemma 25. Let Condition 1 or 2 hold. Then

I ⋂
i=1,...,N

Pi (z) = sup
{ N∑

i=1
IPi (zi)

∣∣∣ N∑
i=1

zi = z
}

(10)

where IP (z)=minµ∈P (µ ·z), and for each z ∈RS , the suprenum is attained24.

Proof. If Condition 2 holds, the statement follows from Corollary 16.4.1 in Rockafellar (1970). If
Condition 1 holds, the statement follows fromTheorem 20.1 in Rockafellar (1970) for the indicator
functions f i(·)= δ(·|Pi), where f i(·) are polyhedral because Pi are polyhedral (Corollary 19.2.1 in
Rockafellar (1970)). □

Denote by {Q1, ...,QN } = A and P =
N⋂

i=1
Q i. Normalize the expected utility such that U(x) = 1,

U(y) = 0 for some x, y ∈ X , and let q = 0.5x+0.5y. By Lemma 25, ∃z1, ..., zN ∈ RS such that∑N
i=1(zi)s = U( f (s)) for s ∈ S, and WP ( f ) = IP (U( f )) = ∑N

i=1 IPi (zi). Next, let λ ∈ (0,1], and
consider, for i = 1, ..., N , the following acts f i that are well-defined for sufficiently small λ:

f i(s)=λ f (s)+
[
(1−λ)0.5−λU( f (s))+λN(zi)s +λ

(
WP ( f )−N · IQ i (zi)

)]
x+

+
[
(1−λ)0.5+λU( f (s))−λN(zi)s −λ

(
WP ( f )−N · IQ i (zi)

)]
y

24We define the support functional IP (·) as the minimum of a linear function over P , while Rockafellar (1970) defines
it as a maximum. Hence, we get sup instead of his inf in lemma 25.
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By our choice of zi, we have
∑N

i=1σi f i =λ f +(1−λ)(0.5x+0.5y)=λ f +(1−λ)q, where σi = N−1.
Next, U( f i(s)) = (1−λ)0.5+λN(zi)s +λ

(
WP ( f )− N · IQ i (zi)

)
, hence IQ i (U( f i)) = (1−λ)0.5+

λWP ( f )=WP (λ f +(1−λ)q) for all i = 1, ..., N . Therefore, λ f +(1−λ)q ∈ c1({λ f +(1−λ)q, p}) =⇒
WP (λ f + (1−λ)q)≥U(p) =⇒ IQ i (U( f i))≥U(p) =⇒ f i ∈ c2({ f i, p}) for all i = 1, ..., N . From the
other hand, by Proposition 5, f i ∈ c2({ f i, p}) for all i = 1, ..., N implies λ f +(1−λ)q ∈ c1({λ f +(1−
λ)q, p}). Thus, we have proven that statement (ii) of Proposition 6 implies statement (i).

Lemma 26. If c1 satisfies statement (i) of Proposition 6, then it is unique and it is given by c1(A)=
{ f ∈ A| f ⪰ g ∀g ∈ A}, where f ⪰ g if and only if ∃p ∈ H0: f ∈ c1({ f , p}) and p ∈ c1({g, p}).

Claim 11. If c1 satisfies statement (i) of Proposition 6, then c1({r, p})= c2({r, p}) for all r, p ∈ H0

Proof of Claim 11. Consider a decomposition r = f1; then, r ∈ c2({r, p}) =⇒ r ∈ c1({r, p}). Next,
by Condition 1 or Condition 2, ∃µ ∈ ⋂

Q∈A Q ̸=∅. Let λr+ (1−λ)q = ∑k
i=1σi f i be an arbitrary

decomposition with λ ∈ (0,1]. Then
k∑

i=1
σi max

Q∈A
WQ( f i)≤

k∑
i=1

σi
∑
s∈S

µsU( f i(s))= ∑
s∈S

µsU
( k∑

i=1
σi f i(s)

)=λU(r)+ (1−λ)U(q)

If r ∈ c1({r, p}), then for some decomposition, maxQ∈A WQ( f i) ≥ λU(p)+ (1−λ)U(q), i = 1, ...,k,
It follows that U(r)≥U(p) and r ∈ c2({r, p}). □
Claim 12. Let c1 satisfies statement (i) of Proposition 6, then there is p f ∈ H0 such that [p ∈
c1({ f , p}) if and only if U(p)≥U(p f )], and [ f ∈ c1({ f , p}) if and only if U(p)≤U(p f )].

Proof of Claim 12. Let p, p ∈△X be such that U(p)=mins∈S U( f (s)), U(p)=mins∈S U( f (s));
one can take p = f (s′), p = f (s′′) for s′, s′′ chosen accordingly. If U(p) = U(p), we are done by
Claim 11, so, consider U(p) < U(p). Consider a decomposition f = f1, then f ∈ c2({ f , p}), and
hence, f ∈ c1({ f , p}). Next, consider f n = (1−1/n) f +(1/n)p, and let λ f n+(1−λ)q =∑k

i=1σi f i be
an arbitrary decomposition. Let µ ∈⋂

Q∈A Q ̸=∅. Assume f i ∈ c2({ f i,λp+(1−λ)q}) for i = 1, ...,k.
Then λU(p)+ (1−λ)U(q)≤∑

s∈SµsU( f i(s)) for i = 1, ...,k, but∑
s∈S

µsU( f i(s))=
k∑

i=1
σi

∑
s∈S

µsU( f i(s))= ∑
s∈S

µsU(λ f n+(1−λ)q)≤λ
n−1

n
U(p)+λ

n
U(p)+(1−λ)U(q)

which implies U(p) ≤ U(p) in contradiction. Hence, f n ̸∈ c1({ f n, p}), and p ∈ c1({ f n, p}). By
continuity of c1, p ∈ c1({ f , p}). Therefore, by continuity of c1, ∃p f = ζp+ (1−ζ)p with ζ ∈ [0,1]

such that c1({ f , p f })= { f , p f }. Since c1 satisfies WARP, the statement of the Claim follows. □
Proof of Lemma 26. By Claims 11, 12, andWARP, there is a utility function W : H →R given by
W( f )=U(p f ) such that f ∈ c({ f , g}) if and only if W( f )≥W(g). ByWARP, c1(A)= { f ∈ A|W( f )≥
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W(g)∀g ∈ A}. Since W is identified via c1 on menus { f , p}, f ∈ H, p ∈ H0, the Lemma follows. □
Let ĉ be the choice correspondence induced by the Gilboa and Schmeidler (1989) maxmin model
with vNM expected utility function U and set of priors ⋂

Q∈A Q, then ĉ satisfies statement (i) of
Proposition 6 and coincides with c1 on menus { f , p}, f ∈ H, p ∈ H0. By Lemma 26, ĉ coincides
with c1 for all menus, proving that statement (i) of Proposition 6 implies statement (ii). ■

Proofs of other statements

Lemma 27. There is a choice correspondence c(·) that satisfies axioms 1-6 and violates Axiom 7 (C-

Non-Degeneracy) such that c(A) ̸= A for some A ∈K ; moreover, c({ f , g}) ̸= { f , g} for some f , g ∈ H

and c(A)= A for all A ∈K0.

Proof. Consider c(A) = {
f ∈ A

∣∣ f (1)(x) ≥ f (2)(x) or f (2)(x) ≥ g(2)(x) ∀g ∈ A
}
. Clearly, ∅ ̸=

c(A) ⊆ A. Consider f , g ∈ H with f (1)(x) = 0, f (2)(x) = 0.5, g(1)(x) = 0, g(2)(x) = 1. Then
c({ f , g}) = {g}. Since f (1)(x) = f (2)(x) for all f ∈ H0, then c(A) = A for all A ∈ K0, and C-Non-

Degeneracy is violated. The proof that other axioms are satisfied is omitted. ■
Lemma 28. If Pθ = ⋂

iθ∈Iθ
Piθ is a coherent intersection for all θ ∈ Θ, and P = ⋂

θ∈Θ
Pθ is a coherent

intersection, then P = ⋂
j∈{Iθ}θ∈Θ

Piθ is a coherent intersection as well.

Proof. Using Lemma 11 repeatedly, IP =maxθ∈Θmaxiθ∈Iθ IPiθ
=max j∈{Iθ}θ∈Θ IP j . ■

Lemma 29. Consider example given on pages 17-18. The intersection P3 = P5 ∩P6 is coherent.

Proof. Note that {µ1,µ3,µ4} is the set of extreme points of P5, and similarly, P6 = conv({µ2,µ3,µ4}),
P3 = conv({µ3,µ4}). Since 0.5µ1+0.5µ2 = (0.2,0.2,0.6)= 0.5µ3+0.5µ4, ∀ f ∈ H, it is not possible
that 3∑

s=1
µ1(s) f (s)(x),

3∑
s=1

µ2(s) f (s)(x)<
3∑

s=1
µ3(s) f (s)(x),

3∑
s=1

µ4(s) f (s)(x)

Hence, for all f ∈ H,

{µ3,µ4}∩
(
arg min

i∈{1,3,4}

3∑
s=1

µi(s) f (s)(x)∪arg min
i∈{2,3,4}

3∑
s=1

µi(s) f (s)(x)
)
̸=∅

It follows that WP3( f ) = mini∈{3,4}
∑3

s=1µi(s) f (s)(x) ≤ max{WP5( f ),WP6( f )}. Since P3 = P5 ∩P6,
WP3( f )≥max{WP5( f ),WP6( f )}, hence WP3( f )=max{WP5( f ),WP6( f )} for all f , and by Lemma 11,
P3 is a coherent intersection of P5 and P6. ■
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