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Evgenii Safonov

In this Online Appendix, we provide additional details for the analysis done in the Appendix of
the paper. Mostly, these are proofs that certain representations imply sets of axioms.

A. Omitted Proofs for Proposition 1 (Representation implies Axioms).

The proof that representation implies Indirect Ambiguity Aversion and Continuity is in the paper.

α : Let f ∈ c(A∪B)∩ A, then ∃P ∈A : WP ( f )≥WP (g) ∀g ∈ A ⊆ A∪B, and f ∈ c(A).

Aizerman’s Property: Let f ̸∈ c(A ∪ { f }). Consider arbitrary h ∈ c(A), then ∃P ∈ A : WP ( f ) ≥
WP (g) ∀g ∈ A. If WP ( f ) > WP (h), then f ∈ c(A ∪ { f }), in contradiction. Hence, WP (h) ≥ WP (g)

∀g ∈ A∪ { f }. It follows c(A)⊆ c(A∪ { f }).

C-β : Note that WP (p) = U(p) for all p ∈ H0, P ∈ A ∈Π. Hence, [WP (p) ≥ WP (q)∀P ∈ A ] ⇐⇒
U(p) ≥ U(q). Therefore, DM’s choice on the domain of constant acts has utility representation
U and, therefore, β holds on the domain of menus, consisting of constant acts.

C-Independence: Let λ ∈ (0,1). Note that

WP (λ f + (1−λ)p)=min
µ∈P

∑
s∈S

µs · (λU( f (s))+ (1−λ)U(p))= (A.1)

= (1−λ)U(p)+λmin
µ∈P

∑
s∈S

µs ·U( f (s))=λWP ( f )+ (1−λ)U(p)

Hence, ∀P ∈ A we have [WP (λ f + (1−λ)p) ≥ WP (λg + (1−λ)p)∀g ∈ A] ⇐⇒ [λWP ( f )+ (1−
λ)U(p)≥λWP (g)+(1−λ)U(p)∀g ∈ A] ⇐⇒ [WP ( f )≥WP (g)∀g ∈ A], and C-Independence follows.

No-C-Hedging: Let f ∈ H, p ∈ H0, f , p ∈ A; consider arbitrary h ∈ c(A). Then ∃P ∈A : WP (h)≥
WP (g)∀g ∈ A, and in particular, WP (h) ≥ WP ( f ), WP (h) ≥ U(p). It follows WP (h) ≥ λWP ( f )+
(1−λ)U(p) = WP (λ f + (1−λ)p). Therefore, WP (h) ≥ WP (g) ∀g ∈ A ∪ {λ f + (1−λ)p}, and h ∈
c(A∪ {λ f + (1−λ)p}), proving No-C-Hedging.

Strict Monotonicity: [g(s) ̸∈ c({ f (s), g(s)})∀s ∈ S] =⇒ [U(g(s)) < U( f (s))∀s ∈ S] =⇒ [
∑

s∈Sµs·
U(g(s))<∑

s∈SµsU( f (s))∀µ ∈Π]=⇒ [minµ∈P
∑

s∈SµsU(g(s))<minµ∈P
∑

s∈SµsU( f (s))∀P ∈A ⊆
Π] =⇒ g ̸∈ c({ f , g}).

C-Non-Degeneracy: Since U is non-degenerate, ∃p, q ∈△X : U(p)>U(q). Then q ̸∈ c({p, q}). ■
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B. Omitted Proofs for Proposition 1 (Lemma 8: Duality).

Lemma 8. Let I be the set of monotone positively homogeneous concave constant additive and nor-

malized functions I : RS →R, and Π be the set of non-empty convex and closed sets of probabilities

P ⊆△S. Then the mapping τ : I →Π given by τ(I) =
{
µ ∈△S

∣∣∣ ∑
s∈S

µ(s)zs ≥ I(z) ∀z ∈RS
}
is a

bijection, and τ−1(P)(z)≡min
µ∈P

∑
s∈S

µ(s)zs. Moreover, Wτ(IA)( f )= IA( f ) ∀ f ∈ H.

Proof.

Claim B.1. The mappings σ(·) :Π→I given by σ(P)(z)=min
µ∈P

∑
s∈S

µ(s)zs and τ(·) are well-defined.

Proof of Claim B.1. One can see that if P ∈Π, then indeed σ(P) ∈I . Now consider I ∈I . Note
that I(0) = 0 by positive homogeneity. Next, note that I(·) is continuous (moreover, Lipschitz
continuous). Indeed, since z+max

s∈S
{zs− z′s} · ι≥ z′, we get |I(z)− I(z′)| ≤ |z−z′|. Thus for arbitrary

z ∈RS the set D(z)= {
z̃ ∈RS ∣∣ I(z̃)≥ I(z)

}
is closed. Next, D(z) is convex, because I(·) is concave.

Moreover, since I(·) is monotone, z−(1/n)ι ̸∈ D(z) for any n = 1,2, ..., and z−(1/n)ι−→ z, hence z is
boundary point of D(z), and by the Supporting Hyperplane Theorem there exist µ ∈RS and c ∈R
such that

∑
s∈S

µ(s)zs+ c = I(z) and
∑

s∈S
µ(s)z̃s+ c ≥ I(z̃) for all z̃ ∈RS . Positive homogeneity of I(·)

implies that c ≥α

( ∑
s∈S

µ(s)zs − I(z)
)
=αc for allα≥ 0, hence c = 0. Next, assume µ(s)< 0 for some

s ∈ S. Consider es ∈RS such that (es)s = 1{s = s}. Then, since es ≥ 0, we get 0 > ∑
s∈S

µ(s) (es)s ≥
I(es) ≥ I(0) = 0, contradiction. Finally,

∑
s∈S

µ(s) ·1 ≥ I(ι) = 1 and
∑

s∈S
µ(s) · (−1) ≥ I(−ι) =−1 imply∑

s∈S
µ(s)= 1. Therefore, µ ∈△S, and τ(I) ̸=∅.

Next, function ξ : △S×[−1,1]S →R given by ξ(µ,z)=min
s∈S

µ(s)zs− I(z) is continuous, therefore,
by the Theorem of Maximum, function η : △S →R given by η(µ) = min

z∈[−1,1]S
ξ(µ,z) is continu-

ous. Take a sequence µn ∈ τ(I) that converges to some µ ∈ △S. Then η(µn) ≥ 0 for all n, and
we conclude that η(µ) ≥ 0. By positive homogeneity of I(·), we get

∑
s∈S

µ(s)zs − I(z) ≥ 0 ∀z ∈
[−1,1]S ⇐⇒ ∑

s∈S
µ(s)zs − I(z) ≥ 0 ∀z ∈RS , thus µ ∈ τ(I), hence τ(I) is closed. Finally, τ(I) is

obviously convex, thus τ(I) ∈Π, proving the claim. □
Claim B.2. σ(τ(I))= I for all I ∈I .

Proof of Claim B.2. One can see that σ(τ(I))(z) ≥ I(z) for all z ∈RS , since
∑

s∈S
µ(s)zs ≥ I(z) for

all µ ∈ τ(I) for all z ∈RS . From the other hand, by the analysis in the proof of Claim B.1, for
all z ∈RS there is µ ∈ τ(I) such that

∑
s∈S

µ(s)zs = I(z). Thus, σ(τ(I))(z) ≤ I(z) for all z ∈RS . We
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conclude that σ(τ(I))= I . □
Claim B.3. τ(σ(P))= P for all P ∈Π.

Proof of Claim B.3. Take any µ ∈ P , then
∑

s∈S
µ(s)zs ≥min

µ′∈P

∑
s∈S

µ′(s)zs = I(z) for any z ∈RS , thus

P ⊆ τ(σ(P)). Towards a contradiction, assume that there exists µ ∈ τ(σ(P))\P ̸= ∅. Since {µ}

and P are disjoint compact subsets of RS , by the Separating Hyperplane Theorem, there exists
z ∈RS such that

∑
s∈S

µ(s)zs < c <min
µ′∈P

∑
s∈S

µ′(s)zs = I(z), contradiction. Thus, τ(σ(P)) ⊆ P , proving

the claim. □
Claims B.1, B.2, B.3 prove the Lemma. ■

C. Omitted Proofs for Proposition 2.

In the paper, we present a series of examples when one axiom is violated, while all other axioms
hold. Here, we give proofs that all other axioms hold for each of the examples.

Independence of Framed Uncertainty. Recall the choice correspondence used in the proof:

c(A) =
{

f ∈ A
∣∣∣ ∑

s∈S
f (s)(x)≥ ∑

s∈S
g(s)(x) ∀g ∈ A or

∑
s∈S

f (s)(y)≥ ∑
s∈S

g(s)(y) ∀g ∈ A
}

Denote by U ,V : H →R given by U( f )=∑
s∈S f (s)(x) and V ( f )=∑

s∈S f (s)(y). Then

c(A) = cU (A)∪ cV (A)

where cU (A) =
{

f ∈ A
∣∣∣U( f ) ≥ U(g) ∀g ∈ A

}
, cV (A) =

{
f ∈ A

∣∣∣V ( f ) ≥ V (g) ∀g ∈ A
}
. Thus,

U and V are utility functions of subjective expected utility maximizers with uniform prior and
vNM expect utility indexes given by u(p) = p(x), v(p) = p(y) correspondingly; cU (·) and cV (·)
are the induced choice correspondences. It follows cU (λA + (1−λ)g) = λcU (A)+ (1−λ)g, and
cV (λA+ (1−λ)g) = λcV (A)+ (1−λ)g, hence c(λA+ (1−λ)g) = λc(A)+ (1−λ)g. In particular,
C-Independence holds.

Next, let h ∈ c(A), f , p ∈ A, then either U(h) ≥ U( f ),U(p) and hence, U(h) ≥ λU( f )+ (1−
λ)U(p) =U(λ f + (1−λ)p), h ∈ cU (A∪ {λ f + (1−λ)p}), or V (h) ≥ V ( f ),V (p) and hence, V (h) ≥
λV ( f )+ (1−λ)V (p) = V (λ f + (1−λ)p), h ∈ cV (A ∪ {λ f + (1−λ)p}), or both. Therefore, h ∈
c(A∪ {λ f + (1−λ)p}), proving No-C-Hedging.

Assume g(s) ̸∈ c({ f (s), g(s)}) ∀s ∈ S. Then g(s)(x) < f (s)(x) and g(s)(y) < f (s)(y) ∀s ∈ S, hence
U(g)<U( f ) and V (g)<V ( f ), implying g ̸∈ c({ f , g}). Strict Monotonicity holds.

Let h ̸∈ A∪{ f }, h ̸∈ A∪{g}. If U(h)≥U(h′) ∀h′ ∈ A, then U(h)<U( f ),U(g), and U(h)<λU( f )+
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(1−λ)U(g)=U(λ f +(1−λ)g); it follows that in any case, h ̸∈ cU (A∪{λ f +(1−λ)g}). Similarly, if
V (h)≥V (h′) ∀h′ ∈ A, then V (h)<V ( f ),V (g), and V (h)<λV ( f )+(1−λ)V (g)=V (λ f +(1−λ)g),
and in any case, h ̸∈ cV (A∪{λ f +(1−λ)g}). Therefore, h ̸∈ c(A∪{λ f +(1−λ)g}). Indirect Ambiguity

Aversion holds.

SinceU ,V are continuous, {( f , A)| f ∈ cU (A)} and {( f , A)| f ∈ cV (A)} are closed. Hence, {( f , A)| f ∈
c(A)}= {( f , A)| f ∈ cU (A)}∪ {( f , A)| f ∈ cV (A)} is closed. Continuity holds.

Finally, z ̸∈ c({0.5x+0.5y, z}), thus C-Non-Degeneracy holds. □
Independence of C-Independence. Recall the choice correspondence used in the proof:

c(A) = arg max
f ∈A

W( f ), W( f ) ≡ f (1)(x)+ f (2)(x)
1+ f (2)(x)

= 1− 1− f (1)(x)
1+ f (2)(x)

Since c(·) has continuous utility representation,WARP, and, hence, Framed Ambiguity holds, and
also Continuity holds.

Next, note that for all numbers a,b, c,d such that b,d > 0 and a, c ≥ 0, and λ ∈ [0,1],
a
b
≤ c

d
=⇒ a

b
≤ λa+ (1−λ)c

λb+ (1−λ)d
≤ c

d
(C.2)

With a = f (1)(x)+ f (2)(x), b = 1+ f (2)(x), c = g(1)(x)+ g(2)(x), d = 1+ g(2)(x) for the case when
W( f )≥W(g), and similar substitution for the other case, we get

min{W( f ),W(g)}≤W(λ f + (1−λ)g)≤max{W( f ),W(g)}

If h ∈ c(A), f , p ∈ A, then W(λ f +(1−λ)g)≤max{W( f ),W(g)}≤W(h), hence h ∈ c(A∪{λ f +(1−
λ)p}), proving No-C-Hedging.

Note that W(p) ≥ W(q) if and only if p(x) ≥ q(x). Hence, if g(s) ̸∈ c({ f (s), g(s)}) ∀s ∈ S, then
f (1)(x) > g(1)(x) and f (2)(x) > g(2)(x). Since W(·) is strictly monotone with respect to f (1)(x)

and f (2)(x), W( f )>W(g), hence g ̸∈ c({ f , g}). Strict Monotonicity holds.

Let h ∈ A, h ̸∈ A ∪ { f }, h ̸∈ A ∪ {g}. Then either W(h′) > W(h) for h′ ∈ A, in which case h ∈
c(A∪ {λ f + (1−λ)p}), or W( f )>W(h) and W(g)>W(h). In this case, W(h)<min{W( f ),W(g)}≤
W(λ f + (1−λ)g), and again, h ∈ c(A∪ {λ f + (1−λ)p}). Thus, Indirect Ambiguity Aversion holds.

Finally, since W(y)= 0< 1=W(x), C-Non-Degeneracy holds. □
Independence ofNo-C-Hedging. Recall choice correspondence c(·) used in the proof. Let x ∈ X ,
0<µ≤µ≤ 1. Then

c(B)= ⋃
k∈[0,∞)

arg max
f ∈B

Wk( f ),
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where
Wk( f )=min

{
(1−µ) f (1)(x)+µ f (2)(x), (1−µ) f (1)(x)+µ f (2)(x), f (1)(x)+µk

}
Let f ∈ c(A∪B)∩ A, then ∃k ≥ 0: Wk( f )≥Wk(g) ∀g ∈ A ⊆ A∪B, hence f ∈ c(A). Thus, α holds.

Let f ̸∈ c(A∪ { f }). Consider arbitrary h ∈ c( f ), then ∃k ≥ 0: Wk( f ) ≥ Wk(g) ∀g ∈ A. If Wk( f ) >
Wk(h), then f ∈ c(A ∪ { f }), in contradiction. Hence, Wk(h) ≥ Wk(g) ∀g ∈ A ∪ { f }. It follows
c(A)⊆ c(A∪ { f }). Hence, Aizerman’s Property holds.

Note that W(p) = p(x) for all p ∈ H0. Therefore, C-β holds. Also, y ̸∈ c({x, y}) for y ∈ X\{x},
proving C-Non-Degeneracy.

Note that Wk(λ f + (1−λ)p) = λWk/λ( f )+ (1−λ)p(x) for all p ∈ H0, f ∈ H, k ≥ 0, λ > 0. Thus,
Wk(λ f + (1−λ)p) ≥ Wk(λg+ (1−λ)p) ⇐⇒ λWk/λ( f )+ (1−λ)p(x) ≥ λWk/λ(g)+ (1−λ)p(x) ⇐⇒
Wk/λ( f )≥Wk/λ(g). To see that C-Independence holds, note that, using k′ = k/λ, we get

∃k ≥ 0 : Wk(λ f + (1−λ)p)≥Wk(λg+ (1−λ)p)∀g ∈ A ⇐⇒ ∃k′ ≥ 0 : Wk′( f )≥Wk′(g)∀g ∈ A

Assume g(s) ̸∈ c({ f (s), g(s)}) ∀s ∈ S. Then, g(1)(x) < f (1)(x) and g(2)(x) < f (2)(x). It follows
Wk(g)<Wk( f ) for all k ≥ 0, hence, g ̸∈ c({ f , g}). Strict Monotonicity holds.

Next, let h ∈ A, h ̸∈ A∪ { f }, h ̸∈ A∪ {g}. Note that

min{Wk( f ),Wk(g)}=min
{

min
{
(1−µ) f (1)(x)+µ f (2)(x), (1−µ) f (1)(x)+µ f (2)(x), f (1)(x)+µk

}
,

min
{
(1−µ)g(1)(x)+µg(2)(x), (1−µ)g(1)(x)+µg(2)(x), g(1)(x)+µk

}}=

=min
{

min
{
(1−µ) f (1)(x)+µ f (2)(x), (1−µ)g(1)(x)+µg(2)(x)

}
,

min
{
(1−µ) f (1)(x)+µ f (2)(x), (1−µ)g(1)(x)+µg(2)(x)

}
,min

{
f (1)(x)+µk, g(1)(x)+µk

}}≤

≤min
{
(1−µ)(λ f (1)(x)+ (1−λ)g(1)(x))+µ(λ f (2)(x)+ (1−λ)g(2)(x)),

(1−µ)(λ f (1)(x)+ (1−λ)g(1)(x)+µ(λ f (2)(x)+ (1−λ)g(2)(x)),λ f (1)(x)+ (1−λ)g(1)(x)+µk
}
=

=Wk(λ f + (1−λ)g)

let K= {k ≥ 0|Wk(h) ≥Wk(h′)∀h′ ∈ A}, then Wk(h) < min{Wk( f ),Wk(g)} ≤Wk(λ f + (1−λ)g) for
all k ∈K. Thus, for all k ≥ 0, ∃h′ ∈ A∪ {λ f + (1−λ)p} : Wk(h′) > Wk(h). Hence, h ̸∈ c(A∪ {λ f +
(1−λ)p}), proving Indirect Ambiguity Aversion.
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Let (Al , f l)−→ (A, f ) : f l ∈ c(Al) ∀l = 1,2, ... Then f l ∈ Al , and ρ({ f }, A)≤ d( f , f l)+ρ({ f l}, A)≤
d( f , f l)+ρ(Al , A)−→ 0, hence f ∈ cl(A)= A. Note that Wk( f )=W1( f ) for all k > 1. Therefore,

c(B)= ⋃
k∈[0,∞)

arg max
f ∈B

Wk( f )= ⋃
k∈[0,1]

arg max
f ∈B

Wk( f )

Since f l ∈ c(Al) for l = 1,2, ..., ∃kl ∈ [0,1]: Wkl ( f l) ≥ Wkl (h) ∀h ∈ Al . Since [0,1] is compact,
∃klm −→ k ∈ [0,1]. Consider arbitrary g ∈ A; since Alm −→ A, ∃glm ∈ Alm : glm −→ g. Then
WP lm ( f lm) ≥ WP lm (glm) ∀m. Note that ( j,h,h′) → Wj(h)−Wj(h′) is continuous, hence Wk( f ) ≥
Wk(g). Therefore, f ∈ c(A). Continuity holds. □
Independence of Strict Monotonocity. Recall choice correspondence c(A) = arg max

f ∈A
W( f ),

W( f )= 2 f (1)(x)− f (2)(x) used in the proof.

Since c(·) has continuous utility representation,WARP, and, hence, Framed Ambiguity holds, and
also Continuity holds. Next, since W(λ f +(1−λ)g)=λW( f )+(1−λ)W(g), C-Independence, No-C-
Hedging, and Indirect Ambiguity Aversion hold. Finally, W(x) = 1, W(y) = 0 for y ∈ X\{x}, hence
y ̸∈ c({x, y}), and C-Non-Degeneracy holds. □
Independence of Indirect Ambiguity Aversion. Recall choice correspondence c(A) = arg max

f ∈A
W( f ) with W( f )= max { f (1)(x), f (2)(x)} used in the proof.

Since c(·) has continuous utility representation,WARP, and, hence, Framed Ambiguity holds, and
also Continuity holds. Since W(λ f + (1−λ)p) = λW( f )+ (1−λ)p(x) for all f ∈ H p ∈ H0, C-
Independence and No-C-Hedging hold. Next, if g(s) ̸∈ c({ f (s), g(s)}) ∀s ∈ S, then f (1)(x)> g(1)(x)

and f (2)(x) > g(2)(x), hence W( f ) > W(g). Therefore, Strict Monotonicity holds. Finally, W(x) =
1> 0=W(y) for y ∈ X\{x}, hence C-Non-Degeneracy holds. □
Independence of Continuity. Recall choice correspondence c(A) = { f ∈ A| f ⪰ g ∀g ∈ A} with
f ⪰ g if either f (1)(x)> g(1)(x), or [ f (1)(x)= g(1)(x) and f (2)(x)≥ g(2)(x)] used in the proof.

Since ⪰ is complete and transitive, c(·) satisfies WARP and, hence Framed Uncertainty. Since for
any λ ∈ (0,1), any f , g,h ∈ H we have f ⪰ g ⇐⇒ λ f + (1−λ)h ⪰ λg+ (1−λ)h, C-Independece,
No-C-Hedging, and Indirect Ambiguity Aversion hold for c(·). Next, g(s) ̸∈ c({ f (s), g(s)}) implies
g(1) ≺ f (1), hence g(1)(x) < f (1)(x), g ≺ f , and g ̸∈ c({ f , g}), proving Strict Monotonicity. Finally,
x ≻ y for y ∈ X\{x}, which yields C-Non-Degeneracy for c(·).
Independence ofC-Non-Degeneracy. Choice correspondence c(A)= A considered in the proof
satisfies Framed Uncertainty, C-Independence, No-C-Hedging because the conclusions of these ax-
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ioms are always satisfied for c(·) independent of the premise. Similarly, c(·) satisfies Strict Mono-

tonicity and Indirect Ambiguity Aversion because the premises of these axioms are never satisfied.
Finally, {(A, f ) ∈K ×H| f ∈ c(A)}=K ×H is closed, hence c(·) is continuous. □

D. Omitted Proofs for Lemma 27.

Recall choice correspondence c(A) = {
f ∈ A

∣∣ f (1)(x) ≥ f (2)(x) or f (2)(x) ≥ g(2)(x) ∀g ∈ A
}
con-

sidered in Lemma 27. In the paper, we show that c(·) satisfies c(A) ̸= A for some A ∈ K ,
c({ f , g}) ̸= { f , g} for some f , g ∈ H, c(A) = A for all A ∈ K0 (and in particular, c(·) violates C-
Non-Degeneracy). Here, we show that c(·) satisfies Axioms 1–6.

Let f ∈ c(A∪B)∩ A. If f (1) ≥ f (2), then f ∈ c(A). If f (1) < f (2), then f (2) ≥ g(2) for all g ∈ A ⊆
A∪B, thus f ∈ c(A). Hence, α holds.

Let h ∈ c(A). If h(1) ≥ h(2), then h ∈ c(A ∪ { f }). Otherwise h(2) ≥ g(2) for all g ∈ A. Then if
h(2) ≥ f (2), then h ∈ c(A∪ { f }). Otherwise f (2) > h(2) ≥ g(2) for all g ∈ A, hence f ∈ c(A∪ { f }),
in contradiction. Therefore, Aizerman’s Property holds.

Since c(A)= A for all A ∈K0, C-β holds.

For p ∈ H0 denote by fλ = λ f + (1−λ)p. Since fλ(1) ≥ fλ(2) ⇐⇒ f (1) ≥ f (2) and [ fλ(2) ≥
gλ(2) ∀gλ ∈λA+ (1−λ)p]⇐⇒ [ fλ(2)≥ gλ(2) ∀g ∈ A], C-Independence holds.

Let h ∈ c(A) with f , p ∈ A. If h(1)(x) ≥ h(2)(x), then h ∈ c(A ∪ {λ f + (1−λ)p}). Otherwise,
h(2)(x) ≥ g(2)(x) for all g ∈ A, and in particular, h(2)(x) ≥ f (2)(x), p(x). Therefore, h(2)(x) ≥
λ f (2)(x)+ (1−λ)p(2)(x), and hence, h(2)(x) ≥ g(2)(x) for all g ∈ A ∪ {λ f + (1−λ)p}, and h ∈
c(A∪ {λ f + (1−λ)p}), proving No-C-Hedging.

Since c({ f (s), g(s)})= { f (s), g(s)} for any f , g ∈ H, s ∈ S, Strict Monotonicity holds1.

Consider h ∈ A, h ̸∈ c(A ∪ { f }), h ̸∈ c(A ∪ {g}. If h ̸∈ c(A), by the proven condition α, we have
h ̸∈ c(A∪ {λ f + (1−λ)g}). Let h ∈ c(A). If h(1)(x)≥ h(2)(x), then h ∈ c(A∪ { f }), in contradiction.
Hence, h(1)(x) < h(2)(x), and h(2)(x) < f (2)(x), g(2)(x). Thus, h(2)(x) < λ f (2)(x)+ (1−λ)g(2)(x).
Since also h(1)(x)< h(2)(x), then h ̸∈ c(A∪ {λ f + (1−λ)g}), proving Indirect Ambiguity Aversion.

Let (An, f n)→ (A, f ) be such that f n ∈ c(An) for all n = 1,2, ... . If f (1)(x)≥ f (2)(x), then f ∈ c(A).
Otherwise, f (1)(x)< f (2)(x) and f n(1)(x)< f n(2)(x) for large enough n; WLOG this is true all n.
Therefore, f n(2)(x) ≥ gn(2)(x) for all gn ∈ An. Consider arbitrary g ∈ A, then ∃gn → g: gn ∈ An

1But its weak counterpart, axiom Monotonicity defined in the proof of Theorem 1 in the paper, fails.
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for all n. Note that the function u : K × H → R given by u(A,h) = h(2)(x)−max
g∈A

g(2)(x) is

continuous; therefore, since f n(2)(x)−max
g∈An

g(2)(x) ≥ 0 for all n, then f (2)(x)−max
g∈A

g(2)(x) ≥ 0.

Hence, f ∈ c(A), proving Continuity.

Notice that function v : K → R given by v(A)=max
g∈A

g(2) is continuous, thus function u : K ×
H → R given by u(h, A)= h(2)−max

g∈A
g(2) is continuous. Hence, f n(2)−max

g∈An
g(2)= 0 for all large

enough n implies f (2)−max
g∈A

g(2)= 0 in the limit. It follows that f (2)≥ g(2) for all g ∈ A, hence

f ∈ c(A), proving Continuity. ■
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