Online Appendix for “Framing of Ambiguity”
Evgenii Safonov

In this Online Appendix, we provide additional details for the analysis done in the Appendix of

the paper. Mostly, these are proofs that certain representations imply sets of axioms.

A. Omitted Proofs for Proposition 1 (Representation implies Axioms).

The proof that representation implies Indirect Ambiguity Aversion and Continuity is in the paper.
a:Letfec(AuB)NA,then3P e o/: Wp(f)=Wp(g) Vge ACAUB, and f € c(A).

Aizerman’s Property: Let [ & c(A U{f}). Consider arbitrary & € c(A), then 3P € of: Wp(f) =
Wp(g) Vg e A. If Wp(f) > Wp(h), then f € ¢c(A U{f}), in contradiction. Hence, Wp(h) = Wp(g)
Vg e Au{f}. It follows c(A) € c(A U{f}).

C-B : Note that Wp(p) = U(p) for all p € Hy, P € of € I1. Hence, [Wp(p) = Wp(q)VP € &/] —
U(p) = U(q). Therefore, DM’s choice on the domain of constant acts has utility representation

U and, therefore, 8 holds on the domain of menus, consisting of constant acts.
C-Independence: Let A € (0,1). Note that

Wp(Af +(1-A)p) = I;li}l;l Z Us - AU (f(s)+(1-V)U(p)) = (A.1)
&P seS

=(1-AU(p)+Amin Y s U(f(8) = AWp(f) + (1 - WU (p)
€ seS

Hence, VP € of we have [Wp(Af + (1= A)p) = Wp(Ag+ (1 - A)p)Vg € A] < [AWp(f)+ (1 -
MU (p) = AWp(g)+(1-V)U(p)Vg € Al < [Wp(f) = Wp(g)Vg € Al, and C-Independence follows.

No-C-Hedging: Let f e H, pe Hy, f,p € A; consider arbitrary A € ¢c(A). Then 3P € of : Wp(h) =
Wp(g)Vg € A, and in particular, Wp(h) = Wp(f), Wp(h) = U(p). It follows Wp(h) = AWp(f) +
(1-MU(p) =Wp(Af + (1 - A)p). Therefore, Wp(h) = Wp(g) Vg € AU{Af +(1—A)p}, and h €
c(AU{Af +(1-2A)p}), proving No-C-Hedging.

Strict Monotonicity: [g(s) € c({f(s),g(s))Vs € S] = [U(g(s)) < U(f(s))Vs € S] = [X4es s
U(g(s)) < ZSES ,USU(f(S))V/J elll = [minyEP ZsES ,UsU(g(S)) < minyeP ZSES /-lsU(f(S))VP ed <
] = g¢c{f,gh.

C-Non-Degeneracy: Since U is non-degenerate, 3p,q € AX: U(p) > U(q). Then q ¢ c({p,q}). B



B. Omitted Proofs for Proposition 1 (Lemma 8: Duality).

Lemma 8. Let .# be the set of monotone positively homogeneous concave constant additive and nor-
malized functions I : RS — R, and Tl be the set of non-empty convex and closed sets of probabilities
P c AS. Then the mapping v : & — Il given by t1(I) = { > I(z) Vz e ]RS} isa

bijection, and T~ (P)(z) = min Z p(s)zs. Moreover, Wy, )(f) = IA(f) VfeH.

HEP se8

Proof.

Claim B.1. The mappingso(-): 11 — & given by o(P)(z) = mz}t Y u(s)zs and t(-) are well-defined.
HEE seS

Proof of Claim B.1. One can see that if P € I1, then indeed o(P) € .#. Now consider I € .#. Note
that 1(0) = 0 by positive homogeneity. Next, note that I(-) is continuous (moreover, Lipschitz
continuous). Indeed, since z +r;1€a}gx{zs —z.}-1= 7', we get |I(z) - I(z)| < |z—2'|. Thus for arbitrary
z € RS the set D(z) = {i eRS | 1(z) = I(z)} is closed. Next, D(z) is convex, because I(-) is concave.
Moreover, since I(-) is monotone, z—(1/n)t ¢ D(z) forany n = 1,2, ...,and z—(1/n)t — z, hence z is
boundary point of D(z), and by the Supporting Hyperplane Theorem there exist u € RS and c € R

such that Y u(s)zs+c=1(z) and Y u(s)Zs+c=1(z)forallze RS. Positive homogeneity of ()
seS seS

impliesthatc = a ( Y u(s)zs — I(z)) = ac forall a = 0, hence ¢ = 0. Next, assume p(s) < 0 for some
seS

s € S. Consider ez € RS such that (e5)s = 1{s =s}. Then, since ez = 0, we get 0 > Z uis)(ez)s =
I(e3z) = I(0) = 0, contradiction. Finally, Z w(s)-1=1()=1and Z u(s)-(=1)=I(- t) = —1 imply

Y. u(s) = 1. Therefore, ue AS, and T(I) ;é .
sesS

Next, function ¢ : AS x[-1,11° - R given by &(u,z) = miép,u(s)zs —I(z) is continuous, therefore,
S€E
by the Theorem of Maximum, function n: AS — R given by n(¢) = min < ¢(u,z) is continu-
ze[-1,1]
ous. Take a sequence p" € 7(I) that converges to some p € AS. Then n(u") = 0 for all n, and

we conclude that n(u) = 0. By positive homogeneity of I(:), we get Y u(s)zs —I(z) =0 Vz €
seS
[-1, 15 < Y ws)zs—I1(z) =0 Vz e RS, thus u € 7(I), hence 7(I) is closed. Finally, 7(I) is

seS
obviously convex, thus 7(I) € I1, proving the claim. O

Claim B.2. o(z(I))=1 foralll € .¥.

Proof of Claim B.2. One can see that o(7(I))(z) = I(z) for all z € RS, since ¥ w(s)zs = I(z) for
seS

all € 7(I) for all z€ RS. From the other hand, by the analysis in the proof of Claim B.1, for

all z € RS there is u € 7(I) such that Y u(s)zs = I(z). Thus, o(t(I))(z) < I(z) for all z€ RS. We
seS



conclude that o(z(Z))=1. O
Claim B.3. 7(o(P)) =P forall P €Il.

Proof of Claim B.3. Take any p € P, then Sgsu(s)zs > gleilrt)lsgsu'(s)zs = I(z) for any z € RS, thus
P < 1(o(P)). Towards a contradiction, assume that there exists u € 7(a(P))\P # &. Since {u}
and P are disjoint compact subsets of RS, by the Separating Hyperplane Theorem, there exists
z € RS such that ¥ us)zs <c< lrlrlleigsgsy’ (s)zs = I(z), contradiction. Thus, 7(c(P)) < P, proving

seS
the claim. O

Claims B.1, B.2, B.3 prove the Lemma. [ |

C. Omitted Proofs for Proposition 2.

In the paper, we present a series of examples when one axiom is violated, while all other axioms

hold. Here, we give proofs that all other axioms hold for each of the examples.

Independence of Framed Uncertainty. Recall the choice correspondence used in the proof:

c(A) = { feA ‘ Y@= Y gs)x) VgeAdor Y F()y)= Y g(s)y) Vge A }
seS seS seS seS

Denote by U,V : H — R given by U(f) =Y ses f(s)(x) and V(f) = Y ses f(s)(y). Then
c(A) = cy(A)ucy(A)
where ¢y(A) = {f € A’U(f) > Ulg) Vg € A}, cv(A) = {f € A‘V(f) > V(g) Vg € A}. Thus,

U and V are utility functions of subjective expected utility maximizers with uniform prior and
VNM expect utility indexes given by u(p) = p(x), v(p) = p(y) correspondingly; cy(-) and cy(-)
are the induced choice correspondences. It follows cyy(1A +(1-A1)g) = Acy(A) +(1 - A)g, and
cy(lA+(1-1)g) = Acy(A)+(1-A)g, hence c(AA +(1-1)g) = Ac(A) + (1 - A)g. In particular,
C-Independence holds.

Next, let A € c(A), f,p € A, then either U(h) = U(f),U(p) and hence, U(h) = AU(f)+ (1 -
MNUp)=UAf+1-)p), hecy(Au{Af +(1—-A)p}), or V(h) =V (f),V(p) and hence, V(h) =
AV +A=-A)V(p) = VAf+A=A)p), h € cy(AU{Af +(1 - A)p}), or both. Therefore, h €
c(AU{Af +(1-2A)p}), proving No-C-Hedging.

Assume g(s) € c({f(s),g(s)}) Vs € S. Then g(s)(x) < f(s)(x) and g(s)(y) < f(s)(y) Vs € S, hence
U(g) <U(f) and V(g) < V(f), implying g & c({f,g}). Strict Monotonicity holds.

Lethg Au{f}, hg Au{g)l. fUR)=U') Vh' € A, then U(h) <U(f),U(g), and U(h) < AU(f)+



1-MU(g)=UAf +(1-2)g); it follows that in any case, h & cy(A U{Af +(1—A)g}). Similarly, if
V(h)=V(R')Vh' € A, then V(h) <V (f),V(g),and V(h) < AV(f)+(1-V)V(g)=V(Af +(1-1)g),
and in any case, A € cy (AU{Af +(1-1)g}). Therefore, h & c(AU{Af +(1-2A)g}). Indirect Ambiguity

Aversion holds.

Since U,V are continuous, {(f,A)|f € cy(A)} and {(f,A)|f € cy(A)} are closed. Hence, {(f,A)|f €
c(A)} ={(f,AIf e cy(ANU{(f,A)If € cy(A)} is closed. Continuity holds.

Finally, z ¢ ¢({0.5x + 0.5y, 2}), thus C-Non-Degeneracy holds. O

Independence of C-Independence. Recall the choice correspondence used in the proof:

_ _ D@+ @) - 1-f(1)(x)
o= ar%”erEaXW(f)’ Wi = 1+f2)x) ! 1+ £(2)(x)

Since c(-) has continuous utility representation, WARP, and, hence, Framed Ambiguity holds, and

also Continuity holds.

Next, note that for all numbers a,b,c,d such that b,d >0 and a,c =0, and A € [0, 1],
a c a Aa+(1-A)c c
—<- = - < ———"— < —
b d b Ab+(1-A)d d

With a = f(1)(x)+ f(2)(x), b =1+ f(2)(x), c = g(1)(x) + g(2)(x), d = 1 + g(2)(x) for the case when

W(f) = W(g), and similar substitution for the other case, we get

(C.2)

min{W(f), W(g)} = WAf +(1 - 1)g) = max{W(f), W(g)}

Ifhec(A), f,peA, then WAAf +(1-21)g) < max{W(f),W(g)} < W(h), hence h € c(AU{Af +(1—
A)p}), proving No-C-Hedging.

Note that W(p) = W(q) if and only if p(x) = q(x). Hence, if g(s) € c({f(s),g(s)}) Vs € S, then
f(D(x) > g(1)(x) and f(2)(x) > g(2)(x). Since W(:) is strictly monotone with respect to f(1)(x)
and f(2)(x), W(f) > W(g), hence g & c({f, g}). Strict Monotonicity holds.

Let he A, hg Au{f}, h ¢ Au{g}. Then either W(h') > W(h) for h' € A, in which case h €
c(AU{Af +(1—=A)p}), or W(f)>W(h) and W(g) > W(h). In this case, W(h) < min{W(f),W(g)} <
WAf +(1—-1)g), and again, h € c(A U{Af +(1— A)p}). Thus, Indirect Ambiguity Aversion holds.

Finally, since W(y) = 0 < 1 = W(x), C-Non-Degeneracy holds. O

Independence of No-C-Hedging. Recall choice correspondence c(-) used in the proof. Let x € X,

O<pu<u=<1l. Then

cB)= |J argmax Wi(f),
ke[0,00) feB



where
Wi (f) = min {(1 - @) f (1(x) + @f (2)(x), (1 - ) f (1)) + pf (2)(x), f (D) + pk]
Let fec(AUB)NA, then 3k = 0: W,(f)=Wy(g) Vge A< AUB, hence f € c(A). Thus, a holds.

Let f & c(AuU{f}). Consider arbitrary h € c¢(f), then 3k = 0: Wr(f) = W,(g) Vg e A. If Wi,(f) >
Wi (h), then f € c(A U{f}), in contradiction. Hence, Wy(h) = W;(g) Vg € Au{f}. It follows
c(A) < c(AU{f}). Hence, Aizerman’s Property holds.

Note that W(p) = p(x) for all p € Hy. Therefore, C-f holds. Also, y ¢ c({x,y}) for y € X \{x},
proving C-Non-Degeneracy.

Note that Wp(Af + (1= A)p) = AW, (f)+ (1 —A)p(x) for all pe Hy, f €e H, k =0, A > 0. Thus,
WirAf +(A=AV)p) = Wr(Ag+(1—A)p) <= AW (f)+(1 = A)p(x) = AWp(g)+ (1 - Vp(x) <
Wia(f) = Wia(g). To see that C-Independence holds, note that, using &' = k/A, we get

=20 W,Af+(1-Vp)=2Wr(Ag+(1-AW)p)VgeA < k' =20: W (f)=Wr(g)VgeA

Assume g(s) € c({f(s),g(s)}) Vs € S. Then, g(1)(x) < f(1)(x) and g(2)(x) < f(2)(x). It follows
Wi (g) < Wr(f) for all £ =0, hence, g & c({f,g}). Strict Monotonicity holds.

Next,lethe A,h g Au{f}, h ¢ Au{g}. Note that
min{W;(f), Wr(g)} = min«{min {(1 —wf (D) +pf(2)(x),(1 - H)f(l)(x) +Ef(2)(x), f(D)(x)+ Ek},

min {(1 - D)) + Fg@)@), (1 - WD) + pg@)(x), g(D(x) + pk}} =

= min { min {(1 - @ f(1)(x) +1f (2)(x), (1 - wg1)(x) + ug2)(x)},

min {(1 - @) (D) + pf 2)), (1 - WD) + pg@)}, min { (1) + pk, g1 + pk} | <

< min {(1 — WAf (D) + (1= 1)g(1)(x)) + @Af (2)(x) + (1 - 1)g(2)(x)),

(1= wAf D))+ (1 - A)g(1)(x) + A f (2)(x) + (1 = 1)g(2)(x)), Af (1)(x) + (1 - 1)g(1)(x) +gk} =

=Wr(Af +(1-2)g)

let K = {k = 0|Wy(h) = W,(h')VRh' € A}, then W(h) < min{W(f), Wr(g)} < Wr(Af +(1 - 1)g) for
all 2 € K. Thus, for all =0, 3’ € AU{Af + (1 —A)p}: Wi(h') > Wi(h). Hence, h ¢ c(A U{Af +
(1-A)p}), proving Indirect Ambiguity Aversion.



Let (AL, f1y— (A, f): flec(AH) VI =1,2,... Then f! € A!, and p(if},A) < d(f, ) + p(f!},A) <
d(f,fH+ p(Al,A) — 0, hence f € cl(A) = A. Note that W,(f) = W1(f) for all & > 1. Therefore,

cB)= |J argmax Wi(f)= ] arg max Wi(f)
ke[0,00) feB kel[0,1]1 feB

Since f! € c(A!) for 1 = 1,2,..., 3k € [0,1]: sz(fl) = W,i(h) Yh € A!. Since [0,1] is compact,
3k!m — E €[0,1]. Consider arbitrary g € A; since Alm — A 3Jglm ¢ Alm: glm — g Then
Wpin (fim) = Wpi,, (g'm) ¥Ym. Note that (j,2,h') — W;(h) — W;j(h') is continuous, hence W(f) =
Wi (g). Therefore, f € c(A). Continuity holds. O

Independence of Strict Monotonocity. Recall choice correspondence c(A) = arg maxW(f),
feA

W(f)=2f(1)(x) — f(2)(x) used in the proof.

Since ¢(+) has continuous utility representation, WARP, and, hence, Framed Ambiguity holds, and

also Continuity holds. Next, since W(Af +(1-1)g) = AW(f)+(1-A1)W(g), C-Independence, No-C-

Hedging, and Indirect Ambiguity Aversion hold. Finally, W(x) = 1, W(y) = 0 for y € X \{«x}, hence

y & c({x, y}), and C-Non-Degeneracy holds. O

Independence of Indirect Ambiguity Aversion. Recall choice correspondence c(A) = arg max
feA
W(f) with W(f) = max {f(1)(x), f(2)(x)} used in the proof.

Since ¢(+) has continuous utility representation, WARP, and, hence, Framed Ambiguity holds, and
also Continuity holds. Since W(Af + (1 - 1)p) = AW(f)+ (1 - A)p(x) for all f € H p € Hy, C-
Independence and No-C-Hedging hold. Next, if g(s) € c({f(s),g(s)}) Vs € S, then f(1)(x) > g(1)(x)
and f(2)(x) > g(2)(x), hence W(f) > W(g). Therefore, Strict Monotonicity holds. Finally, W(x) =
1>0=W(y) for y € X\{x}, hence C-Non-Degeneracy holds. |

Independence of Continuity. Recall choice correspondence c(A) ={f € A|f = g Vg € A} with
f = g if either f(1)(x) > g(1)(x), or [f(1)(x) = g(1)(x) and f(2)(x) = g(2)(x)] used in the proof.

Since > is complete and transitive, c(-) satisfies WARP and, hence Framed Uncertainty. Since for
any A €(0,1), any f,g,h € H we have f = g < Af +(1-1)h = Ag + (1 - A)h, C-Independece,
No-C-Hedging, and Indirect Ambiguity Aversion hold for c(-). Next, g(s) € c({f(s),g(s)}) implies
g(1) < f(1), hence g(1)(x) < f(1)(x), g < f, and g € c({f, g}), proving Strict Monotonicity. Finally,
x>y for y € X \{«x}, which yields C-Non-Degeneracy for c(-).

Independence of C-Non-Degeneracy. Choice correspondence c¢(A) = A considered in the proof

satisfies Framed Uncertainty, C-Independence, No-C-Hedging because the conclusions of these ax-



ioms are always satisfied for c(-) independent of the premise. Similarly, c(-) satisfies Strict Mono-
tonicity and Indirect Ambiguity Aversion because the premises of these axioms are never satisfied.
Finally, {(A,f)e & x H|f € c(A)} = & x H is closed, hence c¢(-) is continuous. a

D. Omitted Proofs for Lemma 27.

Recall choice correspondence c(A) = {f € A|f(1)(x) > f(2)(x) or f(2)(x) = g(2)(x) Vg € A} con-
sidered in Lemma 27. In the paper, we show that c(-) satisfies c(A) # A for some A € %,
c({f,gh) #1{f,g} for some f,g € H, c(A) = A for all A € %) (and in particular, c(-) violates C-

Non-Degeneracy). Here, we show that c(-) satisfies Axioms 1-6.

Let fec(AUB)NA.If f(1) = f(2), then f € c(A). If f(1) < f(2), then f(2) = g(2) forall ge A
A UB, thus f € ¢(A). Hence, a holds.

Let A € c(A). If h(1) = h(2), then h € c(A U{f}). Otherwise h(2) = g(2) for all g € A. Then if
h(2) = f(2), then h € c(A U{f}). Otherwise f(2) > h(2) = g(2) for all g € A, hence f € c(AU{f}),

in contradiction. Therefore, Aizerman’s Property holds.
Since c(A) = A for all A € %), C-f holds.

For p € Hy denote by fi = Af +(1 - A)p. Since f1(1) = f1(2) < f(1) = f(2) and [f1(2) =
812)Vgre A+ (1 -Vpl = [f1(2) = ga(2) Vg € A], C-Independence holds.

Let A € c(A) with f,p € A. If h(1)(x) = h(2)(x), then A € c(A U{Af + (1 — A)p}). Otherwise,
h(2)(x) = g(2)(x) for all g € A, and in particular, ~A(2)(x) = f(2)(x), p(x). Therefore, h(2)(x) =
Af(2)(x) + (1 —A)p(2)(x), and hence, h(2)(x) = g(2)(x) for all g€ AU{Af +(1—-A)p}, and h €
c(AU{Af +(1—-A)p}), proving No-C-Hedging.

Since c({f(s),g(s)}) = {f(s),g(s)} for any f,g € H, s €S, Strict Monotonicity holds'.

Consider h € A, h € c(AU{f}), h € c(Au{g}. If h & c(A), by the proven condition a, we have
hegc(AU{Af +(1—-A)g}h). Let h e c(A). If A(1)(x) = h(2)(x), then h € c(A U{f}), in contradiction.
Hence, A(1)(x) < h(2)(x), and A(2)(x) < f(2)(x), g(2)(x). Thus, A(2)(x) < Af(2)(x) + (1 - 1)g(2)(x).
Since also A(1)(x) < h(2)(x), then h & c(A U{Af + (1 - A)g}), proving Indirect Ambiguity Aversion.

Let (A", f™) — (A,f)besuchthat f" € c(A™) foralln =1,2,.... If f(1)(x) = f(2)(x), then f € c(A).
Otherwise, f(1)(x) < f(2)(x) and f™(1)(x) < f™(2)(x) for large enough n; WLOG this is true all n.
Therefore, f™(2)(x) = g™(2)(x) for all g" € A™. Consider arbitrary g € A, then 3g" — g: g" € A"

IBut its weak counterpart, axiom Monotonicity defined in the proof of Theorem 1 in the paper, fails.



for all n. Note that the function u : £ x H — R given by u(A,h) = h(2)(x) - max g(2)(x) is
g€
continuous; therefore, since f"(2)(x) — mix g(2)(x) = 0 for all n, then f(2)(x) —max g(2)(x) = 0.
geAn

geA
Hence, f € c(A), proving Continuity.

Notice that function v: &£ — R given by v(A) = rézleagc g(2) is continuous, thus function u : A& x
H — R given by u(h,A) = h(2)—r§1€a}i< g(2) is continuous. Hence, f”(2)—;r€13>§ g(2) =0 for all large
enough n implies f(2)— I;eaf £(2) =0 in the limit. It follows that f(2) = g(2) for all g € A, hence
f € c(A), proving Continuity. |
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