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Abstract
We develop and analyze a model of framing under ambiguity. Frames are circum-
stances, unobservable to the analyst, that shape the agent’s perception of the rele-
vant ambiguity. The analyst observes a choice correspondence that represents the
set of possible choices under the various decision frames. We assume that each
frame induces a set of beliefs, while the agent’s utility index remains fixed across
frames. We characterize the information about the decision frames that the analyst
can identify from the choice behavior. If the collection of sets of beliefs is nested
or if all the sets of beliefs are singletons, the collection is uniquely identified. One
agent is more consistent than another if the former has a unique choice whenever
the latter does. We characterize comparative consistency in terms of the model pa-
rameters and apply this result to characterize the aggregation of preferences that
satisfy the Unanimity criterion. Finally, we characterize the behavior of agents
who recognize that they are subject to different frames and learn by combining
their frames into a single model.
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1. Introduction
In this paper, we present a model of decision making under uncertainty with framing effects.
More specifically, we analyze decision makers who confront Knightian uncertainty and whose
reasoning about this uncertainty is influenced by the manner in which the choice problem is pre-
sented. Each frame suggests a different assessment of the underlying uncertainty and therefore,
may yield a different choice from a given set of options. Once the frame is fixed, the decision
maker is a maxmin expected utility maximizer. The frame determines the set of probabilities
over which expected utility is minimized.

Our motivation is the observation that decision makers are constrained by limited cognitive re-
sources; they suffer from limited attention, limited memory or computational ability or a coarse
understanding of contingencies. Such decision makers cannot identify, assess and integrate all
available payoff-relevant information into unified decision procedure. In the absence of such a
coherent procedure, the decision maker may be prone to mistakes and biases and may end up
making different choices in seemingly identical situations.

Experimental literature suggests that, first, framing of uncertainty can matter for the agents’
choice behavior and revealed attitude towards ambiguity. Schneider et al. (2018) and Leland et al.
(2019) find that the degree of ambiguity aversion depends on the transparency of representation
of payoffs in Ellsberg urn problems. Maher and Kashima (1997) and Esponda and Vespa (2016) find
that representing an Ellsberg urn problem in contingent versus non-contingent manner matters
for agents’ decisions1. Second, framing of the relevant state space can matter for the formation
of beliefs. Fischhoff et al. (1978) finds that even experienced mechanics assign different probabil-
ities for the same cause—for instance, "Fuel system"—that leads to the event "Car does not start,"
depending on the structure of the "Fault Tree" representing these potential reasons of car not
starting. Fox and Rottenstreich (2003) and Fox and Clemen (2005), for environments including
uncertainty in weather, sports, and business, also find that beliefs assigned to events differ de-
pending on how the state space is partitioned. Sonnemann et al. (2013) finds that this dependence
on partition of the state space matters for the market prices as well.

Instead of modeling framing explicitly as, for instance, in the model of partition-dependent ex-
pected utility in Ahn and Ergin (2010), our paper considers framing to be unobservable, as is
1Martínez-Marquina et al. (2019) find that contingent/non-contingent framing matters in more simple environments
as well, attributing this effect to the "Power of Certainty."
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often the case in the real world, and investigates if the analyst can identify the family of frames
faced by the agent from her choice behaviour. We build a model that incorporates both the ideas
that framing of uncertainty matters for belief formation, but also for choice under ambiguity. To
obtain this, we extend Gilboa and Schmeidler (1989) maxmin model by allowing the set of beliefs
to depend on the framing that is unobservable to the analyst.

The primitive of our Framed Ambiguity model is a choice correspondence that maps non-empty
compact sets of Anscombe-Aumann acts to subsets of possible choices from those sets. Our ax-
ioms on this correspondence are equivalent to the following representation:

c(A) = ⋃
i

ci(A) (1)

ci(A) =
{

f ∈ A
∣∣∣ min
µ∈Pi

EµU( f ) ≥ min
µ∈Pi

EµU(g) ∀g ∈ A
}

for all i. Hence, each frame i triggers a different assessment of the underlying uncertainty repre-
sented by a set of probability distributions Pi, while vNM expected utility functionU remains the
same for all frames. After adopting a particular frame, the agent becomes a Gilboa and Schmei-
dler (1989) maxmin expected utility maximizer. The representation (1) has been studied in Ap-
pendix B in Hill (2020); the choice correspondence there is interpreted as possible choices of the
ambiguity-averse decision-maker after receiving various signals about the state of the world.

Hill (2020) (Theorem B.1 in Appendix B) shows that the analyst can identify the uniqueminimum

family of sets of beliefs in the representation (1). Our Theorem 1 characterizes the exact set of
representations for a given primitive, and cases in which the family of sets of beliefs is unique. We
show that redundant sets of believes—those that can be added to the minimum representation—
are constructed by intersecting the sets in the minimum family in case if those intersections
satisfy a novel Coherency property. An intersection of sets in a linear space is coherent if the
intersection operation commutes with projections on linear subspaces.

If all sets of beliefs in a representation are singletons; that is, if the decision maker is a subjective
expected utility maximizer with frame-dependent beliefs, or if all sets of beliefs are nested, then
the representation is unique (Corollary 1). For example, consider an “epsilon contamination”
model analyzed in the ambiguity framework in Kopylov (2009)2. Let Pϵ = ϵ△+ (1−ϵ)p, where△
is a non-singleton set of priors, p ∈△ is a singleton prior, and the parameter ϵ ∈ [0,1] captures the
degree of ambiguity aversion. Suppose that ϵ depends on the framing of the decision problem.
2I would like to thank an anonymous referee who suggested to emphasize that nested collection of sets of beliefs is
identified uniquely and to illustrate this result via “epsilon contamination” model.
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Our results show that the analyst can identify the set of possible ϵ uniquely from the choice data.

In Proposition 3, we show that under framing, the decision maker always exhibits “ambiguity-
loving” behavior in some menus: she chooses two different acts, but does not choose their mix-
ture. Our Indirect Ambiguity Aversion axiom demands that adding a convex combination of two
acts to the menu should prevent a third act to be chosen whenever adding each of the two acts
to the menu separately also prevents this third act to be chosen.

We consider two criteria for comparing framed-ambiguity agents: decision maker 1 ismore deci-

sive than decision maker 2 if from each menu, decision maker 1 chooses a subset of acts chosen
by decision maker 2. Decision maker 1 is more consistent than decision maker 2, if whenever
decision maker 2 chooses a unique option from a menu, so does decision maker 1.

In Proposition 4, we show that one decision maker is more decisive than another if and only if
the two have the same expected utility functions and the former’s maximum family of sets of
beliefs is a subset of the latter’s maximum family of sets of beliefs. Hence, a more decisive agent
is one who has fewer frames. Theorem 2 provides a characterization of the more consistent than
relationship for decision makers with finitely many frames. Unlike greater decisiveness, greater
consistency does not require fewer frames; rather, it imposes restrictions on the type of additional
frames that a more consistent agent can have.

In Corollary 3, we apply Theorem 2 for the special case when one of the decision makers has a
single frame to characterize the set of Unanimous rules (Crès et al. (2011)) that aggregate sets of
beliefs of a group of Gilboa and Schmeidler (1989) agents who agree on utilities but disagree on
beliefs. The aggregation procedure involves 3 types of operations on sets of beliefs: taking convex
combinations, taking (convex hulls of) unions, and taking coherent intersections. The former two
operations are considered in Crès et al. (2011); we show that adding coherent intersections allows
us to characterize the set of rules that must respect choice suggested by all agents.

An agent who contemplates different frames and considers only priors that belong to all frames
evaluates the uncertain perspectives in a favorable way: she may choose an act in comparison to
a constant alternative even if there is no frame under which this choice is optimal. We call this
type of behavior favorable evaluation and characterize it in Proposition 6.
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1.1. Structure of the Paper

The rest of the paper is organized as follows. Section 2 introduces our setup, axioms and framed
ambiguity model and provides characterization and identification results. Section 3 analyzes be-
havioral implications of agent’s sensitivity to framing. Section 4 provides our comparative statics
results and application to aggregation of preferences. Section 5 discusses the relevant literature,
and Section 6 concludes. All proofs are given in the Appendix.

2. Model
We consider an Anscombe-Aumann3 setup with an arbitrary set of prizes X 4 and finite set of
states of the world S with |S| ≥ 2. An act f : S →△X is a mapping from the state space to the
set △X of finite-support probabilities (simple lotteries) on X . Denote the set of acts by H with
typical elements f , g,h, ... and endow it with the suprenum metric d induced by the suprenum
metric on the set of simple lotteries. The set of acts H is a mixture space with mixture operation
defined via (λ f + (1−λ)g)(s) = λ f (s)+ (1−λ)g(s). A constant act is an act that gives the same
consequences in all states: f (s) = p ∀s ∈ S. We denote such acts by the corresponding lotteries
p, q, r, ... whenever it does not cause confusion. The set of constant acts is H0 ⊂ H.

The decision maker (DM, she) chooses acts from menus A,B,C, ... A menu is a non-empty com-
pact subset of H such that the set of prizes

{
x ∈ X

∣∣∃ f ∈ A, s ∈ S : f (s)(x) > 0
}
—that is, the set of

prizes that have positive probability to appear in some state for some act in the menu—is finite5.
We denote the set of all menus byK and endow it with the Hausdorff metric ρ induced by metric
d on H. A mixture between a menu and an act is defined via λA+(1−λ)g = {λ f +(1−λ)g | f ∈ A};
note that this mixture is also a menu. The set of menus consisting of constant acts is K0 ⊂K .

2.1. Choice Correspondence

The analyst observes a choice correspondence6 c : K → 2H such that ∅ ̸= c(B) ⊆ B for any B ∈
K . We interpret c(B) as a subset of acts that is chosen from menu B by the DM. We make the
following implicit assumptions:
3Anscombe et al. (1963)
4All subsequent results remain unchanged if there are only 2 prizes, i.e. if |X | = 2.
5Absent the last requirement, a subjective expected utility maximizer may have empty choice from some menus.
6Modern literature discusses inference of choice correspondences from the stochastic choice data: Ok and Tserenjig-
mid (2019), Balakrishnan et al. (2022). Since we will impose a continuity axiom, it would be enough for the analyst
to observe only choices from finite menus.
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(i) DM’s perception of uncertainty could be influenced by the details of the decision problem
unobserved by the analyst that do not provide DM with additional information about the state of
the world. We call the collection of such details a frame.

(ii) An analyst is able to recover choice correspondence from the data by observing repeated
choices from various menus. Inconsistency of choices emerges only either because the framing
of the problem varies or because the agent is indifferent between alternatives.

(iii) The collection of frames that DM experiences is invariant across menus.

The first assumption is the premise of the project, as we are interested in the class of choice
correspondences that emerge as a result of the ambiguity framing. Assumption (ii) in particular
says that no learning occurs: notwithstanding the fact that DM faces multiple frames, she is
unable to connect her previous analysis to the current situation. Assumption (iii) says that we
don’t consider menu-dependent frames. Our final assumption is:

(iv) Decision maker is cautious toward the uncertainty that she can envision.

Assumption (iv) is common for models involving Knightian uncertainty. With framing, a new
motivation to use caution emerges: DM might think that the uncertainty relevant for the choice
problem is framed in a way that erroneously inflates values of some acts relative to others—
emphasizing priors that favor these acts. The worst case scenario evaluation can be a good ap-
proach to counteract this type of framing.

2.2. Axioms

We introduce behavioral axioms on the choice correspondence in the spirit of the discussed above
implicit assumptions (i)-(iv). Most of our axioms closely follow axioms from Appendix B in Hill
(2020)7. We first discuss axioms 1-4 that are essentially identical to those in Hill (2020).

Recall that Weak Axiom of Revealed Preference (WARP)

WARP: ∀A,B ∈K c(A)∩B ̸=∅ =⇒ c(B)∩ A ⊆ c(A)

is equivalent to conditions α and β taken together:

α: ∀A,B ∈K c(A∪B)∩ A ⊆ c(A)

β: ∀A,B ∈K c(A∪B)∩ A ̸=∅ =⇒ c(A)⊆ c(A∪B)

7I am grateful to Brian Hill for pointing out to this paper during D-TEA conference in Paris in 2024.
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Our first axiom relaxes WARP on the domain of menus that involve non-constant acts and cor-
responds to axioms A1, A2, A4 in Hill (2020)8.

AXIOM 1 (Framed Uncertainty):

1.1 (α): ∀A,B ∈K c(A∪B)∩ A ⊆ c(A)

1.2 (Aizerman’s Property): ∀A ∈K ∀ f ∈ H f ̸∈ c(A∪ { f }) =⇒ c(A)⊆ c(A∪ { f })

1.3 (C-β): ∀A,B ∈K0 c(A∪B)∩ A ̸=∅ =⇒ c(A)⊆ c(A∪B)

If there is some framing under which an act is the best in the menu, it is the best in the subset of
this menu under the same framing; this justifies α. Aizerman’s Property relaxes β9; it says that
adding to the menu an act that will not be chosen does not prevent other acts to be chosen. Since
we analyze framing that influences only the perception of uncertainty, we requireWARP to hold
on the domain of menus consisting of constant acts, hence C-β should hold.

The next axioms10 are A3 and A9 in Hill (2020). We endow K ×H with the suprenum metric.

AXIOM 2 (C-Non-Degeneracy): ∃p, q ∈ H0 such that {p}= c({p, q})

AXIOM 3 (Continuity): { (A, f ) ∈K ×H | f ∈ c(A) } is closed

We generalize Gilboa and Schmeidler (1989)’s c-independence axiom to the choice setting. The
next axiom is A5 in Hill (2020):

AXIOM 4 (C-Independence): ∀A ∈K ∀p ∈ H0 ∀λ ∈ (0,1) c(λA+ (1−λ)p)=λc(A)+ (1−λ)p

C-Independence says that uncertainty regarding s ∈ S does not matter for evaluation of constant
acts, and that DM is able to factorize Knightian uncertainty and objective uncertainty regard-
ing the payoff given by an act. When β is relaxed, C-Independence does not fully capture this
intuition11, and we add the property described below.

AXIOM 5 (No C-Hedging):
∀A ∈K ∀ f ∈ H ∀p ∈ H0 ∀λ ∈ (0,1) f , p ∈ A =⇒ c(A)⊆ c(A∪ {λ f + (1−λ)p})
8In finite environments, α and Aizerman’s Property jointly are equivalent to “Path Independence” axiom c(A∪B)=
c(c(A)∪B) in Plott (1973). Path independence holds in our model as well.

9Let β hold. If f ̸∈ c(A∪ { f }), then c(A∪B)∩ A ̸=∅ for B = { f }; hence, c(A)⊆ c(A∪B)= c(A∪ { f }) by β.
10We use C-Non-Degeneracy axiom instead of weaker statements f ̸∈ c({ f , g}) for some f , g ∈ H, or c(A) ̸= A for
some A ∈K because there are models where the agent does not discriminate between constant acts (c(A)= A for
all A ∈ K0), but exhibits a non-degenerate choice—in particular, f ̸∈ c({ f , g}) for some f , g ∈ H—that satisfies the
rest if our axioms (Lemma 27). Although such choice behavior is intriguing, it is not the focus of this paper.

11See Proposition 2 on page 10 and its proof in the Appendix.
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To get the intuition behind No C-Hedging, suppose that in all circumstances, act λ f + (1−λ)p

seems to be so attractive that DM cannot choose h from A ∪ {λ f + (1−λ)p}. Irrespectively of
DM’s perception of uncertainty, either f or p should be at least as attractive as λ f + (1−λ)p,
since constant act p cannot effectively hedge against bad outcomes in f . Hence, the presence of
both f and p in A would not allow DM to choose h from A under any circumstances as well.
Axiom 3 is close to A6 in Hill (2020); however in that paper, the premise of the axiom is p ∈ c(A),
and the extended menu in the right hand side is a union of A and mixtures of p and all acts from
A, not just a mixture with one act f .

AXIOM 6 (Strict Monotonicity): ∀ f , g ∈ H g(s) ̸∈ c({ f (s), g(s)}) ∀s ∈ S =⇒ g ̸∈ c({ f , g})

Strict Monotonicity says that DM chooses consequentially: if she does not choose g(s) versus f (s)

for any contingency s, she never chooses g versus f irrespectively of the perceived uncertainty.
Strict Monotonicity is the second part of A7 in Hill (2020); hence, it weakens the latter axiom.

Our last axiom formalizes assumption (iv):

AXIOM 7 (Indirect Ambiguity Aversion): ∀A ∈K ∀h ∈ A ∀ f , g ∈ H ∀λ ∈ (0,1)

h ̸∈ c(A∪ { f }) and h ̸∈ c(A∪ {g}) =⇒ h ̸∈ c(A∪ {λ f + (1−λ)g})

If DM is averse to ambiguity within the frame, she always considers act λ f + (1−λ)g to be as
good as at least one of acts f or g. If adding either f or g to the menu does not allow h to be
chosen under any frame, so should do a mixture of f and g. This axiom is completely different
from A8 (Uncertainty Aversion) in Hill (2020).

2.3. Representation

We denote by Π the set of all non-empty compact and convex sets of beliefs P ⊆△S. We endow
Π with the Hausdorff metric. When we talk about a set of beliefs P , we assume that P ∈Π.
DEFINITION 1. A Framed Ambiguity model is a pair (U ,A ), where U : △X → R is a non-

degenerate vNM expected utility function, and A ⊆ Π is a non-empty closed family of non-empty

compact and convex sets of beliefs P ∈Π.
DEFINITION 2. A framed ambiguity model (U ,A ) represents choice correspondence c(·) if

c(B) = ⋃
P∈A

arg max
f ∈B

WP ( f ) ∀B ∈K (2)

where
WP ( f ) = min

µ∈P

∑
s∈S

µ(s)U( f (s)) (3)
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Note that each framed ambiguity model represents a choice correspondence given by eq. (2),
since c(B)⊆ B, and arg max in eq. (2) is non-empty for each P ∈A . The function WP : H →R is
a utility function of the Gilboa and Schmeidler (1989) maxmin model with vNM expected utility
U and set of beliefs P . An act belongs to c(B) whenever it maximizes menu B with respect to at
least one of utility functions {WP }P∈A .

In our model, the only way the frame influences the agent’s choice is via shaping the set of beliefs
about the unknown state of the world. Accordingly, if two different framings give rise to the same
set of beliefs, they are behaviorally indistinguishable in our setup and we consider these framings
to be the same in our analysis. Hence, in this paper, we identify frames with the sets of beliefs
that they induce and use the terms “frame” and “set of beliefs” interchangeably in the rest of the
paper. Clearly, if the analyst observes additional information about the framings, she can infer
more from the expanded data set. We leave this case for future research and focus on the case
when choice correspondence is the only fundamental observed by the analyst.

The model (2), (3) where family A of sets of beliefs is not necessary closed has been studied in
Appendix B in Hill (2020); there, the author considers a choice correspondence that encompasses
possible choices of the ambiguity-averse decision maker after information updating.

The following proposition characterizes choice behaviour consistent with framing of ambiguity.
Note that Hill (2020) provides a characterization of the model in terms of a similar set of axioms.
The main difference is the property that captures ambiguity aversion within the frame (ex-post
ambiguity aversion in Hill (2020)).

Proposition 1. A choice correspondence has a framed ambiguity representation if and only if Ax-

ioms 1–7 hold.

No axiom is redundant for the representation.

Proposition 2. Let12 |X | > 2, and S be arbitrary, then for any axiom Ai ∈ {Axiom 1, ..., Axiom 7},

there is a choice correspondence ci such that Ai fails, and other axioms hold.

Consider the following example that sheds light on our identification result. Let X = {x, y} and
S = {1,2}. Agents 1 and 2 have the same vNM expected utility function U1(p)=U2(p)= p(x) for
p ∈ △X . Denote by µ = Pr(s = 1), and let µ1 < µ2 < µ3 < µ4. The first agent has two frames:
12If |X | = 2 the examples given in the proof of Proposition 2 go through as well, except one that shows the indepen-
dence of A1; the question if A1 is independent of A2-A7 in case when |X | = 2 is open.
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A1 = {P,Q}, where P = conv({µ1,µ3}), Q = conv({µ2,µ4}). The second agent has an additional
frame that corresponds to the intersection of P and Q: A2 = {P,Q,P∩Q}, P∩Q = conv({µ2,µ3}).
Thus, if f (1)(x)≥ f (2)(x), act f is evaluated according to prior µ2 under frames P∩Q, Q, and µ1

under frame P . Similarly, if f (1)(x)< f (2)(x), f is evaluated according to µ3 under frames P∩Q,
P , and µ4 under frame Q. Hence, WP∩Q( f )=max{WP ( f ),WQ( f )} for any f . Thus, if f maximizes
WP∩Q(·) in a menu, f also maximizes at least one of WP (·) or WQ(·). It follows that both agents’
choice behavior is captured by the same correspondence c(·), and the analyst cannot differentiate
the agents.

Themultiplicity of representations in this example occurs becauseWP∩Q( f )=max{WP ( f ),WQ( f )}

for any act f . Our results show that this is the only reason for multiplicity of representations
(aside from the transformations of the vNM expected utility function). When |S| = 2, any closed
collection C of sets of beliefs with non-empty intersection has the property that W⋂

P∈C P ( f ) =
maxP∈C WP ( f ) for all f , thus the frame ⋂

P∈C P can be added to or deleted from the representa-
tion without altering the induced choice correspondence. For arbitrary S, this is true if and only
if the collection of frames satisfy the following intersection-coherency property13 (Lemma 11):

DEFINITION 3. A non-empty closed collection C of non-empty convex compact sets in △S ⊂RS is

intersection-coherent if for any linear subspace T of RS ,⋂
P∈C

pro jTP = pro jT
( ⋂

P∈C

P
)
̸= ∅.

If collection C is intersection-coherent, we say that
⋂

P∈C P is a coherent intersection of C .

Note that a singleton collection {P} is intersection-coherent, and its coherent intersection is P . We
illustrate the coherency property in Figure 1 for the case |S| = 3; in this case,△S is 2-dimensional,
and it is without loss to consider projections on 1-dimensional linear subspaces14. When the
projection of the intersection is equal to the intersection of projections, we show this object by
a double-pointed arrow without other notations. We use notations to show the cases when the
projection of the intersection is a proper subset of the intersection of projections. Accordingly,
the intersections P∩Q and S∩T are not coherent. The intersection W∩Y is coherent, although
in order to show it, we must consider projections on all possible 1-dimensional linear subspaces,
not just on 3 subspaces depicted in the picture.

We use the concept of coherent intersection to present our first main result.
13The definition can be applied to arbitrary sets in arbitrary linear spaces without change.
14This holds in general. Lemma 11 implies that the intersection is coherent if and only if the operation of projection
on any 1-dimensional linear subspace commutes with the intersection operation.
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Figure 1

Theorem 1. If c(·) satisfy axioms 1–7, then there is a unique minimum family of sets of beliefs

A ⊆ Π, a unique maximum family of sets of beliefs B ⊆ Π and vNM expected utility function U

such that:

(i) (U ′,A ′) represents c(·) if and only ifU ′ is a positive affine transformation ofU , andA ⊆A ′ ⊆B;

(ii) P ∈B if and only if P is a coherent intersection of a collection of sets of beliefs C ⊆A .

Corollary 1. Let (U ,A ) represent c(·). If A consists of nested sets of beliefs or all sets of beliefs

P ∈A are singletons, then the representation is unique up to a positive affine transformation of U .

Theorem 1 strengthens the results of Theorem B.1 in Hill (2020); the latter asserts the existence
of the unique minimum family of sets of beliefs for each primitive that satisfies the axioms. Our
theorem characterizes the exact set of representations. Coherent intersections of sub-collections
of sets of beliefs in the minimum representation—and only such sets of beliefs—can be added to
the representation without altering the induced choice correspondence.

To get the idea behind the identification result, consider some act f that is not the worst or the
best15. Call menu D maximal for act f if f ∈ c(D), but f ̸∈ c(D′) when D ⊊ D′. If DM’s choices
satisfyWARP, there exists exactly one such menu—the menu consisting of all acts that are weakly
15That is, f chosen in some non-singleton menu, and also not chosen in some menu.
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worse than f ; that is, the lower counter set of f . Withmultiple frames, there aremultiple maximal
menus for an act, and each maxmimal menu corresponds to a lower contour set of f according to
the Gilboa and Schmeidler (1989) maxmin model with some set of beliefs P . The family of sets of
beliefs A recovered from the choice correspondence by this way is the minimum family of sets of
beliefs in the representation. This identification approach generalizes the idea of “focal menus”
from Kopylov (2022) to infinite environments.

Since the intersection of two different singleton sets of beliefs is empty, Theorem 1 implies that
in the special case when DM is a subjective expected utility maximizer with frame-dependent
belief, A is a unique collection of frames (singleton beliefs) in the representation of c(·). If the
family of set of beliefs is nested, it must constitute a unique representation of the corresponding
primitive as well—see the epsilon contamination model from the Introduction.

2.4. Identification of Multi-Multiple Prior Models in the Literature

In this section, we discuss multi-multiple prior models in the literature and the extend to which
the beliefs are identified in these models in comparison with the framed ambiguity model.

In Chandrasekher et al. (2022), the set of relevant priors—the convex hull of the priors that are
used by DM to evaluate acts—is unique for the representation. This is true for our model as well:
the set of relevant priors is a convex hull of the union of all frames in the minimum family16.
Our model also exhibits a unique minimum family of sets of beliefs. Chandrasekher et al. (2022)’s
primitive is a rational (complete and transitive) preference relation; observing rational (satisfying
WARP ) choices from non-binary menus would not benefit the analyst in their model. In contrast,
in our model, the analyst benefits from observing choices from larger menus (Section 4.3).

In Kopylov (2021), the analyst can identify the projections of sets of beliefs that account for the
ambiguity relevant for given decision problems. In our model, the analyst can identify all priors
in each set of beliefs completely, but some redundant sets of beliefs may occur.

Lu (2021) shows that the distribution of sets of beliefs is uniquely identified if the analyst knows
either frequencies of choices from binary menus consisting of an ex-ante lottery over Anscombe-
Aumann acts and a constant act, or frequencies of choices from arbitrary menus of Anscombe-
Aumann acts (Theorem 7 in his paper). Lu (2021)’s model makes an implicit assumption that the
process of assignment of a menu is independent of the process governing the choice of the set
16This follows from Theorem 1.
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of beliefs that DM uses. Our model, in contrast, can accommodate a correlation between a menu
and a set of beliefs as long as it is not perfect—we operate only with the choice correspondence
c(·) that can be interpreted as the support of the distribution of choices for each menu.

As an illustration17, consider again an epsilon contamination model where the sets of beliefs take
the form Pϵ = ϵ△+ (1− ϵ)p, and suppose, for simplicity, that parameter ϵ takes binary values
ϵ ∈ {0,1}. Suppose also that the agent is more likely to be ambiguity averse (ϵ = 1) when she
evaluates non-constant acts together with constant acts, consistent with comparative ignorance
pattern from Fox and Tversky (1995). For example, if the menu includes a constant act, then ϵ= 1

with probability 2/3, and ϵ= 0 with probability 1/3, while if the menu does not include a constant
act, then ϵ= 1 with probability 1/2 and ϵ= 0 with probability 1/2. The corresponding stochastic
choice behavior is not compatible with random ambiguity model Lu (2021) and hence, that model
remains silent about the identification. Our results show that in this example, by observing the
support of the random choice distribution, the analyst uniquely identifies two sets of beliefs that
the agent may use: P1 =△ and P0 = {p}.

In Lehrer and Teper (2011), the analyst identifies a convex family of singleton beliefs uniquely
from the binary relation and similarly, in Heller (2012), the analyst identifies a convex family of
singleton beliefs uniquely from the choice correspondence. Our Corollary 1 shows that a non-
convex family of singleton beliefs is also identified uniquely from the choice correspondence. Our
model, even constrained to singleton beliefs, admits a richer behavior.

As an illustration, consider DM who has two frames: P1 = {µ1} that favors f to 0.5 f +0.5g to g,
and P2 = {µ2} that favors g to 0.5 f +0.5g to f . Such DM chooses f and g, but not a compromise
alternative 0.5 f +0.5g from the menu { f ,0.5 f +0.5g, g}. In contrast, DM in Heller (2012) should
necessary choose a compromise alternative 0.5 f +0.5g if she chooses f and g, since this mixture
is the best according to one of the intermediate beliefs λµ1 + (1−λ)µ2 for some λ ∈ (0,1).

3. Frame Sensitivity
In this section, we study the behavioral differences between agents who are sensitive to the fram-
ing of a choice problem—in the sense that they may change their decision depending on the
framing of the decision problem—and agents who are not sensitive to the framing. We show that
if framed-ambiguity agent respects one of the considered below axioms, then she respects them
17I would like to thank an anonymous referee who outlined the idea of this example and made a connection to
comparative ignorance.
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all and she is not sensitive to framing.

Following the analysis of Sen (1971), consider the Revealed Preference relation ⪰⊆ H2 defined by
f ⪰ g ⇐⇒∃A ∈K : g ∈ A, f ∈ c(A). Note that when α holds—in particular, in our model—we can
equivalently define ⪰ as f ⪰ g ⇐⇒ f ∈ c({ f , g})18.

Revealed Preference Rationality: Revealed preference ⪰ is complete and transitive.

Next, consider the following Property γ from Sen (1971):

γ : ∀D : ∅ ̸=D ⊆K ,
⋃

B∈D B ∈K
⋂

B∈D c(B)⊆ c(
⋃

B∈D B)

Property γ says that if some alternative (act) is chosen in each of the sets B in collection D, it
must be chosen in their union as well. Sen (1971) shows that properties α and γ are equivalent
to the following property:

Normality: ∀A ∈K c(A)= { f ∈ A | f ⪰ g ∀g ∈ A}, where f ⪰ g iff ∃A ∈K : g ∈ A, f ∈ c(A)

Normality says that the agent chooses from a menu by maximizing the revealed preference rela-
tion. As pointed out by Heller (2012), α, γ and Aizerman’s Property do not implyWARP19.

To characterize the minmax regret model, Stoye (2011) considers the following axiom:

Ambiguity Aversion: ∀ f , g ∈ H,λ ∈ [0,1] ∀A ∈K : {g, f ,λ f + (1−λ)g}⊆ A

f , g ∈ c(A) =⇒ λ f + (1−λ)g ∈ c(A)

Ambiguity Aversion says that if the agent chooses acts f and g, she should choose act λ f +(1−λ)g,
provided that all these acts are in the menu. This argument does not work in a model with frames:
f can be chosen under frame 1, g under frame 2, but λ f + (1−λ)g is not chosen under frames 1
and 2. When α holds, Ambiguity Aversion is implied by the following property:

Direct Ambiguity Aversion: ∀A ∈K ∀ f , g ∈ H ∀λ ∈ (0,1)

f ∈ c(A∪ { f }) and g ∈ c(A∪ {g}) =⇒ λ f + (1−λ)g ∈ c(A∪ {λ f + (1−λ)g})

Finally, to clarify the role of No-C-Hedging axiom in our model, consider its alternative:

Pairwise No C-Hedging: ∀ f ,h ∈ H, ∀p ∈ H0

h ∈ c({h, f }) and h ∈ c({h, p}) =⇒ h ∈ c({h,λ f + (1−λ)p})
18Note that even if we demand Revealed Preference Rationality, α and Aizerman’s Property to hold together, this
does not imply WARP without other axioms. For instance, it can be that in each of the three pairs of f , g,h, both
alternatives are chosen, but c({ f , g,h})= { f , g}.

19These three axioms together are equivalent to axiomWARNI from Eliaz and Ok (2006).
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Pairwise No C-Hedging says that if, in binary comparisons with act f and constant act p, act h is
chosen, then h must be chosen in a binary comparison with a mixture between acts f and p—
intuitively, because this mixture cannot be strictly more attractive than both acts f and p. Again,
this argument does not work in a model with frames.

Proposition 3. Let c(·) have framed ambiguity representation (U ,A ). Then:

(i) Either |A | = 1 and properties β, WARP, Revealed Preference Rationality, γ, Normality, Ambiguity

Aversion, Direct Ambiguity Aversion, Pairwise No-C-Hedging hold for c(·);
(ii) Or |A | > 1 and each of the properties β, WARP, Revealed Preference Rationality, γ, Normality,

Ambiguity Aversion, Direct Ambiguity Aversion, Pairwise No-C-Hedging is violated for c(·).

Statement (i) of Proposition 3 ismore straightforward: when |A | = 1, the framed ambiguitymodel
reduces to the maxmin model of Gilboa and Schmeidler (1989) defined for a choice correspon-
dence. Accordingly, the rationality axioms β,WARP, Revealed Preference Rationality, γ, Normality

hold, and axioms Ambiguity Aversion, Direct Ambiguity Aversion, Pairwise No-C-Hedging that rep-
resent (rational) DM’s attitude toward Knightian and objective uncertainty hold as well.

Statement (ii) of Proposition 3 is more surprising: it says that if there is some ambiguity framing,
the DM’s choice behavior violates all of the axioms discussed in Proposition 3. In particular,
the DM’s behavior violates Normality which is assumed for most of the analysis of choice with
frames in Salant and Rubinstein (2008), and it violates Ambiguity Aversion which holds for the
decision-maker who violatesWARP in Stoye (2011).

If the analyst mistakenly considers the agent’s behavior to be not frame-sensitive, observing vio-
lations of Ambiguity Aversion or Direct Ambiguity Aversion, the analyst can mistakenly conclude
that the agent likes Knightian uncertainty, and observing a violation of Pairwise No-C-Hedging,
the analyst can mistakenly conclude that the agent exhibits non-linear preference toward the
objective uncertainty.

Finally, by checking Revealed Preference Rationality or Pairwise No-C-Hedging, the analyst can
verify if the agent is frame-sensitive by observing only choices from binary menus.

4. Connection of Frames and Consistency of Choices
In this section, we analyze framed-ambiguity agents who differ in their ability to recognize that
their perception of uncertainty is subject to framing. Consider an agent (DM 2, he) who is un-
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certain regarding the severity of the Global Warming20. One day, he listens to an expert who
says that the probability p of Global Warming being severe is between 20 and 60 percents; the
agent then acts—for instance, trades assets—based on estimate p ∈ [0.2,0.6]. On a different day,
he listens to another expert who says that the relevant probability is between 50 and 75 percents;
this time, the agent acts based on estimate p ∈ [0.5,0.75].

Another agent (DM 1, she) also has access to both estimates, but, in contrast to DM 2, she tries
to connect the two points of view and come up with a more coherent picture of the relevant
uncertainty. One—extreme—way to do this is to pick one of the experts and trust this expert
in any circumstances, disregarding the other expert’s opinion. In Proposition 4, we show that
such agent is more decisive in comparison to DM 2: her choice correspondence is a subset of his.
Moreover, this type of behavior characterizes comparative decisiveness.

The agent may also try to use both estimates. Unable to come up with a Bayesian framework
to connect the two opinions, she may still use reasonable approaches. First, she may admit all
possibilities, and estimate that the Global Warming is severe with probability between 20 and 75
percent; that is, p ∈ [0.2,0.75]= [0.2,0.6]∪[0.5,0.75]21. Second, she may consider only probabil-
ities that are consistent with both estimates; this way, p ∈ [0.5,0.6]= [0.2,0.6]∩[0.5,0.75]. Third,
she may assign each expert a weight22—for instance, 2/3 for the first expert and 1/3 for the second
expert—and find a compromise range of probabilities: p ∈ [0.3,0.65]= 2

3 ·[0.2,0.6]+ 1
3 ·[0.5,0.75].

The way the agent connects the expert’s opinions may be itself subject to framing: one day,
she uses estimate [0.2,0.75], the other day, she uses the range [0.5,0.6], while on a third day,
she is inclined to use a compromise estimate [0.3,0.65]. Moreover, the agent may use any of
these “combined” estimates as a new “opinion”. For instance, she may come up with estimate
p ∈ [0.3,0.6] = [0.2,0.6]∩ [0.3,0.65] = [0.2,0.6]∩ (2

3 · [0.2,0.6]+ 1
3 · [0.5,0.75]

)
. In Theorem 2,

we show that such agent is more consistent than DM 2: she has a singleton choice whenever
DM 2 does. Moreover, the three considered ways of connecting/aggregating frames (experts’
opinions) characterise comparative consistency—with a nuance that for non-binary state space,
only coherent intersections of sets of beliefs are used.

Below, we formalize the ideas introduced above and characterise the (unobserved) aggregation
of frames in terms of the (observed) comparative choice behavior of agents.
20We follow Crès et al. (2011) using Global Warming as a motivating example.
21When frames are singleton beliefs, this aggregation idea corresponds to Default to Certainty in Gilboa et al. (2010),
and for general sets of beliefs it is analyzed in Crès et al. (2011) and Hill (2011)

22This way of aggregation of sets of beliefs is also considered in Crès et al. (2011) and Hill (2011).
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4.1. Decisiveness

We start by considering a natural decisiveness relation23.

DEFINITION 4. DM 1 with choice correspondence c1(·) is more decisive than DM 2 with choice

correspondence c2(·) if c1 ⊆ c2.

Thus, we say that DM 1 is more decisive than DM 2 if she chooses among a subset of alterna-
tives that could be chosen by DM 2. Let (A2)coh be the closure of the (non-empty and topologi-
cally closed) family of sets of beliefs A2 with respect to the operation of coherent intersection of
frames—that is, (A2)coh is the minimum family of sets of beliefs that includes A2 and is closed
under taking coherent intersections of its sub-collections.

Theorem 1 and Lemma 28 in the Appendix imply that (A2)coh exists, and it is the maximum
family of frames that represents the choice correspondence induced by the family of frames A2

and a common vNM expected utility function.

Proposition 4. Let c1(·) and c2(·) be represented by (U1,A1) and (U2,A2). Then DM 1 is more

decisive than DM 2 if and only if U1 is a positive affine transformation of U2 and A1 ⊆ (A2)coh.

Thus, Proposition 4 tells us that a more decisive agent is one who starts with the maximum
collection of frames that the other agent may have and drops some of those.

4.2. Consistency

We proceed with a less demanding notion, which compares instances in which agents make the
same choice consistently.

DEFINITION 5. DM 1 with choice correspondence c1(·) is more consistent than DM 2 with choice

correspondence c2(·) if for all A ∈K |c2(A)| = 1 =⇒ |c1(A)| = 1.

If DM 1 is more decisive than DM 2, then c2(A) = { f } =⇒ c1(A) = { f }, hence DM 1 is also more
consistent than DM 224. Let us now formally define the aggregation concepts discussed in the
Global Warming example.

DEFINITION 6. Given a non-empty closed collection of frames C , its convex union is a set of beliefs

23Note that our comparative decisiveness notion is defined using the choice correspondences directly. It differs
from the comparative decisiveness notion in Heller (2012). In that paper, the author compares two indecisiveness
relations that are defined using a “psychological” preference relation revealed from the choice.

24Note also that comparative consistency and comparative decisiveness are reflexive and transitive binary relations
on the set of framed-ambiguity agents. The latter relation is antisymmetric, but the former is not.
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P given by
P = conv

( ⋃
P ′∈C

P ′
)

(4)

Definition 6 describes the aggregation approach in which the agent contemplates a subset of
frames C at a moment and think that any prior in any set of beliefs is possible; the convex hull
is taken because non-convex sets of beliefs—as oppose to non-convex sets of frames—are not
identifiable in our model; this is true as well for the Gilboa and Schmeidler (1989) maxmin model.

The notion of coherent intersection of frames is introduced in Section 2 (Definition 3). Our next
definition formalizes the idea of a weighted average of various opinions.

DEFINITION 7. Given a non-empty finite collection of frames C = {P1, ...,PN }, its convex combina-

tion with respect to weights λ ∈△ ({1, ..., N}) is a set of beliefs P given by

P =
N∑

i=1
λiPi ≡

{
µ ∈△S

∣∣∣ ∃µi ∈ Pi for i = 1, ..., N : µ=
N∑

i=1
λiµi

}
(5)

Finally, we formalize the idea of combining different aggregation approaches.

DEFINITION 8. Let A ⊆ Π be a non-empty closed collection of frames. Then its closure Γ(A )

with respect to the operations of convex union, convex combination and coherent intersection is a

minimum family of frames that satisfies (i) A ⊆ Γ(A ), and (ii) if P is either a convex union, or a

convex combination, or a coherent intersection of a collection of frames C ⊆Γ(A ), then P ∈Γ(A ).

Lemma 20 in Appendix shows that the closure given by Definition 8 exists and is unique. Our
third main result is that, when the number of frames is finite, the three considered operations of
frame connection characterize the comparative consistency:

Theorem 2. Let c1(·) and c2(·) be represented by (U1,A1) and (U2,A2) respectively, and |A2| <∞.

Then the following statements are equivalent:

(i) DM 1 is more consistent than DM 2;

(ii) U1 is a positive affine transformation of U2, and A1 ⊆Γ(A2);

(iii) U1 is a positive affine transformation ofU2, and any P ∈A1 is a coherent intersection of convex

unions of convex combinations of frames in A2.

If A2 is infinite, we might need to generalize the definition of the convex combination of frames
to work with infinite closed collections of frames25. We conjecture that Theorem 2 remains true
25Weights λ generalize to the probability distribution on the appropriately defined sigma-algebra of collections of
frames, and selection of priors µi ∈ Pi generalizes to the measurable selection of priors from the collection.
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with infinite number of frames as well.

4.3. Identification of Frames from Preference Relation

Ambiguity literature commonly considers the primitive to be a preference relation on the set of
Anscombe-Aumann acts, and not a choice correspondence, as we do. In this section, we analyze
to which extend the analyst can identify the frames from the observed preference relation.

We begin our analysis by showing that data on choices from binarymenus is sufficient to conclude
that one agent is more consistent than another according to Definition 8.

Proposition 5. Let c1(·) and c2(·) satisfy axioms 1–7. Then DM 1 is more consistent than DM 2 if

and only if ∀g,h ∈ H c1({ f , g})⊆ c2({ f , g}).

Thus, DM 1 is more consistent than DM 2 if and only if DM 1 is more decisive than DM 2 on
the set of binary menus. This binary formulation of comparative consistency allows us to use
Theorem 2 to get identification result for the representation of a preference relation.

Formally, model (U ,A ) represents preference relation ⪰ if (U ,A ) represents choice correspon-
dence c(·) such that f ⪰ g ⇐⇒ f ∈ c({ f , g}) ∀ f , g ∈ H. Note that c1(·) = c2(·) for binary menus if
and only if DM 1 is more consistent than DM 2, and DM 2 is more consistent than DM 1; hence:

Corollary 2. Framed ambiguity models (U1,A1) and (U2,A2) with |A1|, |A2| < ∞ represent the

same preference relation if and only ifU2 is a positive affine transformation ofU1 andΓ(A2)=Γ(A1).

Corollary 2 tells us that observing choices only from binary menus leaves a big room for different
representations. Moreover, in contrast to Theorem 1 for choice correspondence, an analyst may
not be able to identify a uniqueminimum collection of frames that represents26 a given preference
relation, which is clear from the following example, illustrated in Figure 2.

Let X = {x, y}, U(p) = p(x), and |S| = 3. Consider priors µ1 = (0.1,0.2,0.7), µ2 = (0.3,0.2,0.5),
µ3 = (0.2,0.3,0.5), µ4 = (0.2,0.1,0.7) and sets of priors P1 = {µ1}, P2 = {µ2}, P3 = conv({µ3,µ4}),
P5 = conv({µ1,µ3,µ4}), P6 = conv({µ2,µ3,µ4}). Let the first family of frames be A1 = {P1,P2,P3},
and the second family beA2 = {P1,P2,P5,P6}. Note that P5 = conv(P1∪P3), P6 = conv(P2∪P3),
and P3 = P5 ∩P6, where the intersection of P5 and P6 is coherent (Lemma 29). Hence, Γ(A1) =
Γ(A2). By Corollary 2, models (U ,A1) and (U ,A2) represent the same preference relation ⪰.
26Nothing changes for the identification of the vNM expected utility function, since the restriction c0(·) of choice
correspondence on the set K0 of menus consisting of constant acts satisfies WARP.
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Figure 2

Preference relation ⪰ does not have a representation with minimum subset of frames, since in
all candidate models (U , {P1,P2}), (U , {P1}), (U , {P2}), DM’s belief regarding s = 2 is fixed: µ(2) =
µ1(2)=µ2(2)= 0.2, while the original models allow DM to use priors µ3(2)= 0.3 and µ4(2)= 0.1.
Hence, the candidate models cannot represent ⪰.
By Theorem 1, (U ,A1) and (U ,A2) represent different choice correspondences c1(·) and c2(·).
For example, let f , g ∈ H, p ∈ H0 be as follows: f (x) = (1,0,0), g(x) = (0,1,0), p(x) = 0.15, then
c1({ f , g, p}) = { f , g}, but c2({ f , g, p}) = { f , g, p}, where p is chosen under frame P5 for c2. By
Theorem 1, A1 is the unique family of frames representing c1(·); c2(·) admits two different repre-
sentations: A2 is the minimum family of frames, and (A2)coh =A2∪ {P3} is the maximum family
of frames that represents c2(·).
Consider also again epsilon-contamination model Pϵ = ϵ△+ (1−ϵ)p, where△ is a non-singleton
set of priors, p ∈△ is a singleton belief, and ϵ ∈ [0,1]. Consider a framed-ambiguity agent with
family of sets of beliefs A = {Pϵ,Pϵ′}, where 0≤ ϵ< ϵ′ ≤ 1. As discussed, Corollary 1 implies that
the analyst who observes the associated choice correspondence identifies A uniquely.

Suppose now that the analyst observes only choices from binary menus (preference relation). In
this case, the multiplicity of representations is characterized by Corollary 2. One can see that
Γ({Pϵ,Pϵ′}) = {Pϵ′′ |ϵ ≤ ϵ′′ ≤ ϵ′}. Thus, by observing binary choices, the analyst can only establish
that the agent can exhibit theminimum (ϵ) andmaximum (ϵ′) levels of ambiguity aversion, but the
analyst cannot tell if the agent exhibits any intermediate level of ambiguity aversion ϵ′′ ∈ (ϵ,ϵ′).
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4.4. Application to Aggregation of Preferences

Our model has a population interpretation: consider a group of people that agree on the ranking
of prizes (share the same utility), are averse to ambiguity, and disagree on beliefs. Suppose people
in this group want to aggregate their judgments such that the resulting rule is rational, respects
the ambiguity aversion, and a natural Unanimity criterion:

DEFINITION 9. Let {⪰i}i=1,...,N and ⪰ be binary relations on H. We say that ⪰ satisfies Unanimity

with respect to {⪰i}i=1,...,N if for all f , g ∈ H [ f ⪰i g ∀i = 1, ..., N] =⇒ f ⪰ g.

Theorem 2 helps us to characterize such rules:

Corollary 3. Let {⪰i}i=1,...,N and ⪰ be preference relations on H that have Gilboa and Schmeidler

(1989) maxmin representations with the same vNM expected utility function, but different sets of

beliefs {Pi}i=1,...,N and P . Then ⪰ satisfies Unanimity with respect to {⪰i}i=1,...,N if and only if P is

a coherent intersection of convex unions of convex combinations of {P1, ...,PN }.

Note also that, according to Theorem 2, taking arbitrary number of operations of coherent inter-
section, convex union and convex combination of {P1, ...,PN } in any order always produces a set
of beliefs that corresponds to a rule in the desired class.

Aggregation of ambiguity averse opinions in the literature. In Crès et al. (2011), the au-
thors study the aggregation of the opinions of a group of ambiguity-averse experts. They impose
a stronger Expert Uncertainty Aversion axiom. In terms of our result, their aggregation proce-
dure is equivalent to taking convex unions and convex combinations of sets of beliefs, but not
coherent intersections. We show that usage of all three of these operations characterises the ag-
gregation procedure that satisfies the Unanimity criterion. To achieve this result, we use some of
the instruments from the proofs in Crès et al. (2011) and Chandrasekher et al. (2022).

In Hill (2011), the author characterizes the same aggregation rule as Crès et al. (2011) in terms of
the Unanimity criterion plus the requirement that an aggregation rule should remain the same
across all profiles of preferences. In terms of our model, Hill (2011)’s additional requirement rules
out coherent intersections primarily because not all intersections of sets of beliefs are coherent,
hence if a rule includes a coherent intersection, it cannot be applied to all profiles of preferences.
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4.5. Favorable Evaluation

Consider again an agent who recognize that she is subject to different frames. Suppose she wants
to combine those frames into a single model in order to decrease her ambiguity. The most natural
way is to intersect the sets of beliefs that correspond to different frames and thus retain only priors
consistent with all framings, if there are such priors.

For example, consider |S| = 3. Let one frame be associated with set of beliefs P = {µ ∈△S|µ(1)≤
0.3}, and another frame be associated with set of beliefs Q = {µ ∈△S|µ(2) ≤ 0.3}. Let us fix the
utility index and express acts in utils. Consider first a framed ambiguity agent with collection of
sets of beliefs A = {P,Q}, and consider acts p = (2/5,2/5,2/5), f = (1/3,1/3,1/2). Since WP ( f ) =
WQ( f ) = 1/3 < 2/5 = WP (p) = WQ(p), such agent chooses only p from a binary menu of p and
f : c({p, f })= {p}; this happens because both Q and P allow the agent to entertain the possibility
that µ(3) = 0. Second, consider DM who tries to accommodate both assessments by intersecting
the corresponding sets of beliefs into S = P ∩Q = {µ ∈ △S|µ(1),µ(2) ≤ 0.3}. This DM chooses
both acts from the same menu: c′({p, f }) = {p, f }. Indeed, WS( f ) = 0.3 · (1/3)+0.3 · (1/3)+0.4 ·
(1/2) = 2/5 = WS(p), since the lowest probability of state 3 according to the set of priors S is
µ(3)= 1−0.3−0.3= 0.4.

Thus, despite the fact that the decision maker with a single frame S aggregates the frames P and
Q, she is not more consistent in her choices than the decision maker who is subject to frames P

and Q. This is an illustration of Theorem 2: the intersection S = P∩Q is not coherent and hence,
the aggregation procedure decreases consistency of choices in some cases.

Our next result characterizes the behavioral properties of intersections of frames. The result
holds if at least one of the two technical conditions introduced below hold.

CONDITION 1. A family of sets of beliefs A is finite,
⋂

P∈A
P ̸=∅, and each P ∈A is polyhedral.

Condition 1 says, in particular, that each P ∈ A can be expressed via a finite number of linear
inequalities. Equivalently, each P ∈A is a polytope—that is, there are finitely many priors µ ∈ P

that DM uses to evaluate acts under each frame P .

CONDITION 2. A family of sets of beliefs A is finite, and
⋂

P∈A
ri(P) ̸=∅.

Here, we denote by ri(P) the relative interior of the set P . Intuitively, Condition 2 says that the
intersection of frames does not cause the ambiguity existing in each frame in some dimension to
vanish. Note that in our example, both Condition 1 and Condition 2 hold.
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The following proposition uses results regarding the dual of a sum of convex functions27. To ease
notations, we omit the universal quantifiers ∀ f ∈ H,∀p ∈ H0 in statement (i); it is assumed that
p and q are constant acts, f i are general acts, and σi are convex weights.

Proposition 6. Let c2(·) be represented by the framed ambiguitymodel (U ,A ), and either Condition

1 or Condition 2 holds for A . Then the following statements are equivalent:

(i) c1(·) satisfies WARP and Continuity, and f ∈ c1({ f , p}) if and only if there exists a decomposition

λ f + (1−λ)q =∑k
i=1σi f i with λ ∈ (0,1] such that f i ∈ c2({ f i,λp+ (1−λ)q}) for all i = 1, ...,k;

(ii) c1(·) is represented by the Gilboa and Schmeidler (1989) maxmin model with vNM expected

utility function U and set of priors
⋂

Q∈A

Q.

Proposition 6 says that, under a mild technical condition, the agent who perceives the relevant
ambiguity to be the intersection of frames in A is the agent who evaluates an act using its most
favorable decomposition28 according to the variety of decision frames A .

Let us illustrate Proposition 6 with our example above. The choice correspondence c2 is repre-
sented by the framed ambiguity agent (DM 2) with a collection of sets of beliefs A = {P,Q}, and
the choice correspondence c1 is represented by the Gilboa and Schmeidler (1989) maxmin model
with set of beliefs S = P ∩Q (DM 1). DM 1 contemplates whether to choose act f in a pairwise
comparison with act p. She notice that act f1 = (1/2,1/6,1/2) is as good as act p under frame Q,
since WQ(1/2,1/6,1/2)= 0.7 ·(1/2)+0.3 ·(1/6)= 2/5=WQ(p). Similarly, act f2 = (1/6,1/2,1/2) is as
good as act p under frame P , since WP (1/6,1/2,1/2)= 0.7 · (1/2)+0.3 · (1/6)= 2/5=WQ(p).

Once DM 1 recognizes that f = 0.5 f1+0.5 f2, she uses this decomposition to evaluate act f in the
most favorable way: as half of the value of act f1 under its most favorable frame Q and half of
the value of act f2 under its most favorable frame P . DM 2 concludes that she must choose f in
a pairwise comparison with p.

The convex weights used in this decomposition are σ1 =σ2 = 0.5, and λ= 1, hence an auxiliary
act q from Proposition 6 is irrelevant in this example. Would the act in question be h = (0,0,1)

instead, the DM 1 could use a decomposition h = 1
6 f + 5

6 p with λ = 1
6 and q = p and apply the

arguments above to conclude that she should choose h in pairwise comparison with p as well.
27Corollary 16.4.1 and Theorem 20.1 in Rockafellar (1970).
28The reason why we consider a mixture of f with a constant act q in Proposition 6 is that in our setup, the set of acts

H = (△X )S have extreme points that do not have non-trivial decompositions. If the set of consequences is instead
R

N , and the agent’s utility function is linear over consequences, considering this extra mixture is not necessary.
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5. Related Literature
Our paper contributes to the literature on framing, ambiguity and aggregation of beliefs.

Tversky and Kahneman (1981) introduced the notion of framing. In their formulation, framing
introduces a benchmark that enables decision makers to identify some outcomes as gains and
others as losses. In our formulation, a frame enables a decision maker to organize her reasoning
about the uncertainty.

Framed ambiguitymodel extends Gilboa and Schmeidler (1989) maxminmodel of ambiguity aver-
sion. We enrich it by allowing for multiple sets of beliefs and interpreting each set of beliefs as a
frame as in Salant and Rubinstein (2008)29.

In Hill (2020), the author studies dynamic consistency in ambiguity models. In Appendix B, he
considers a choice correspondence that encompasses possible choices of the ambiguity-averse
decision-maker in the ex-post stage. His model is identical to ours with the minute difference
that we require the family of sets of beliefs to be closed. While Hill (2020) focuses on another
interpretation and his main results concern with the dynamic consistency of preferences, our
Proposition 1 operates with the set of axioms close to the one that he uses in Theorem B.1 in
Appendix B. Our Theorem 1 strengthen the identification result in his Theorem B.1.

The Anscombe-Aumann framework in Heller (2012) is a special case of our model under two
restrictions: all sets of beliefs are singletons, and the family of frames (singleton beliefs) is convex.
Heller (2012) builds on Lehrer and Teper (2011), where the primitive is preference relation. In
Section 4 of Lehrer and Teper (2011), the authors consider a “Bewley-type” generalization of
their model: the decision maker prefers one act to another if and only if there exists at least one
set of priors such that for every prior in this set, the first act is better than the second. The agent’s
behavior is consistent both with this model and our model if and only if it is consistent with the
baseline model of Lehrer and Teper (2011)30.

In Chandrasekher et al. (2022), the authors consider a decision maker whose perception of uncer-
tainty is given by a family of sets of beliefs. They assume that the decision maker considers all
29We also assume that the analyst does not observe a frame, but observes only a resulting choice correspondence, as
in section 3 of Salant and Rubinstein (2008).

30The decision maker’s behavior in Section 4 of Lehrer and Teper (2011) always satisfies the Independence axiom,
but can violate Completeness. In our paper, in contrast, the decision maker constrained to choose from binary
menus satisfies Completeness, since she always chooses at least one act from the menu, but violates Independence
whenever there is a non-singleton set of priors.
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sets of beliefs in the family, and chooses the most optimistic set of beliefs and the most pessimistic
belief in a set to evaluate a given act. Thus, their agent respectsWARP in contrast to ours.

Kopylov (2021) builds amodel where an agent uses maxminmodels with different sets of beliefs to
evaluate acts. In his model, sets of beliefs are menu-dependent; moreover, eachmenu corresponds
to exactly one set of beliefs. We, in contrast, assume that the decision maker can use all frames
from the family to make choices from each menu. Thus, the two models are not nested.

Lu (2021) studies a random maxmin model. His primitive is a stochastic choice from menus
consisting of ex-ante lotteries over Anscombe-Aumann acts31. In terms of his model, we assume
less choice information available for the analyst: only the support of the distribution of choices
from menus consisting of degenerate lotteries over acts is known.

Stoye (2011) characterizes a model of minimax regret. In his model, the agent chooses acts that
minimize the worst-case—with respect to a set of priors and acts in the menu—expected regret.
The agent’s behavior can be represented by both Stoye (2011)’s model and our model if and only
if the agent is a subjective expected utility maximizer.32

There is a theoretical literature that, in contrast to our setup, considers framing observable to
the analyst. In Ahn and Ergin (2010), the authors assume that the analyst observes preference
relations for various frames given by the partition the relevant state space and that the agent is an
expected utility maximizer within each frame. Bourgeois-Gironde and Giraud (2009) assume that
each action can be interpreted in terms of a frame-dependent Savage act, and allow the analyst
to observe, in particular, comparisons between the same action framed differently. Their setup
allows the agent to exhibit various attitudes towards ambiguity. In Caplin and Martin (2020), the
authors model a frame as a mapping from agent’s actions to consequences. The expected-utility
maximizing agent knows only the disitribution of frames, but not the realized frame, while the
analyst observes the latter as well.

Outside of the uncertainty framework, preference identification in the environment with framing
is studied in Goldin and Reck (2020). Other decision-theoretic papers that consider violations of
rationality in decision making under uncertainty include Ok et al. (2012), Galaabaatar and Karni
(2013) and Hara et al. (2019).
31He considers also stochastic choices from menus of Anscombe-Aumann acts (i.e. degenerate lotteries over
Anscombe-Aumann acts) in the Appendix of the paper (section A5).

32Under Stoye (2011)’s Ambiguity Aversion axiom, our model reduces to Gilboa and Schmeidler (1989) model (Propo-
sition 3), which reduces to subjective expected utility model under Stoye (2011)’s Independence axiom.
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Our comparative statics result contributes to the literature on aggregation of preferences under
uncertainty. In Corollary 3, we consider aggregation of opinions of ambiguity averse experts that
agree on utilities, but disagree on sets of beliefs. We discuss the relation of our results to Crès
et al. (2011) and Hill (2011) in Section 4.4. Nascimento (2012) and Danan et al. (2016) are also
concerned with aggregation of preferences under uncertainty.

6. Conclusion and Discussion
In this paper, we explore framing of ambiguity assuming that the analyst observes possible
choices from various menus. This choice of the primitive is deliberate. While the model of ran-
dom ambiguity Lu (2021) allows the analyst to identify the distribution of sets of beliefs from the
given choice data, that model implicitly assumes that the process of menu assignment is statisti-
cally independent of the process that picks a random set of beliefs, which, in our opinion, is too
strong constraint in application to framing of ambiguity—see our discussion in Section 2.4. We
weaken this assumption by implicitly requiring that for any choice problem, each frame appears
with some positive probability, but allow those probabilities to vary across menus.

Another way to study the problem would be to focus on the binary relation as is done, for exam-
ple, in Lehrer and Teper (2011), Kopylov (2021)33, Chandrasekher et al. (2022), and many other
papers. When the agent is rational, as in Chandrasekher et al. (2022), a natural way to extend
her rational preference to choice correspondence is by assuming thatWARP holds—or, put it dif-
ferently, assuming that the agent chooses all alternatives that give her the highest utility in the
given menu. If the choice correspondence satisfiesNormality, the choice correspondence can also
be reconstructed from the choice over binary menus. However, there is no clear argument why
the agent should satisfy Normality under framing; and indeed, we show that framed-ambiguity
agent violates Normality whenever there is non-trivial framing—see Proposition 3 in Section 3.

Therefore, studying binary relation as a primitive, potentially, limits the information that the
analyst may use to identify the parameters of themodel. In Section 4.3, we show that this is indeed
the case. Under the assumption that the number of frames is finite, we characterize the set of
representations consistent with choices over binary menus. We discuss the related identification
nuances in the models of justifiable preferences Lehrer and Teper (2011) and justifiable choice
Heller (2012) in Section 2.4.
33In Kopylov (2021), the author mentions choice correspondence in Section 4.2, but does not analyze it further.
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Finding behavioral properties that characterize the binary relation consistent with framing of
ambiguity is an interesting open question. This paper, however, focuses more on the identifica-
tion and comparative statics aspects of ambiguity framing. We provide axiomatization for the
choice correspondence, and discuss behavior associated with sensitivity to framing, but leave
axiomatization of the associated binary relation for future research.

Lastly, note that even if some framing in the experiment is controlled, it might be hard to ex-
clude all other types of framing, that is, details of the environment that influence the agent’s
decisions under ambiguity. Our analysis suggests to use non-binary menus in the experiments,
since choices from larger menus contain additional information that cannot be inferred from the
binary comparisons if framing of uncertainty is involved.

Appendix

Proof of Proposition 1

For brevity, we omit the proof that axioms follow from the representation except of the proof for
the Indirect Ambiguity Aversion and Continuity axioms. Assume (U ,A ) represents c(·).
Let h ∈ A, h ̸∈ c(A ∪ { f }), h ̸∈ c(A ∪ {g}), C = {P ∈ A |WP (h) ≥ WP (h′)∀h′ ∈ A}. Then WP (h) <
WP ( f ),WP (g) ∀P ∈C , hence WP (λ f +(1−λ)g)≥λWP ( f )+(1−λ)WP (g)>WP (h) ∀P ∈C . There-
fore, ̸ ∃P ∈ A : WP (h) ≥ WP (h′) ∀h′ ∈ A ∪ {λ f + (1−λ)g}, h ̸∈ c(A ∪ {λ f + (1−λ)g}). Therefore,
Indirect Ambiguity Aversion holds. □
Let (Ak, f k)−→ (A, f ) : f k ∈ c(Ak)∀k = 1,2, ...Then f k ∈ Ak, and ρ({ f }, A)≤ d( f , f k)+ρ({ f k}, A)≤
d( f , f k) + ρ(Ak, A) −→ 0, hence f ∈ cl(A) = A. Since f k ∈ c(Ak) for k = 1,2, ..., ∃Pk ∈ A :
WPk ( f k)≥WPk (h) ∀h ∈ Ak. Since Π is compact, ∃Pkm −→ P ∈Π. Since A is closed, P ∈A . Con-
sider arbitrary g ∈ A; since Akm −→ A, ∃gkm ∈ Akm : gkm −→ g. Then WPkm ( f km) ≥ WPkm (gkm)

∀m. Note that the function ζ :Π×H×H given by

ζ(Q,h,h′)=min
µ∈P

∑
s∈S

µsU( f (s))−min
µ∈P

∑
s∈S

µsU(g(s))

is continuous, hence WP ( f )≥WP (g), and f ∈ c(A). Therefore, Continuity holds. □
Assume now that choice correspondence c(·) satisfies Axioms 1-7. We show that c(·) admits a
framed ambiguity representation. The next lemma is strightforward.

Lemma 1. Continuity (Axiom 6) implies (i) Act Continuity: ∀A ∈K { f ∈ H | f ∈ c(A∪ { f })} is

closed, (ii) Menu Continuity: ∀ f ∈ H {A ∈K | f ∈ c(A)} is closed.
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We say that the restriction of choice correspondence c0 on the set of compact menus of constant
acts K0 has an expected utility representation, if there is a vNM expected utility U : △X →
R such that ∀A ∈ K0 [(p, ..., p) ∈ c(A) ⇐⇒ [U(p)≥U(q) ∀q ∈ A]]. Note that if c(·) satisfies
Axioms 1-7, so does c0(·).
Lemma 2. Given Axioms 1-7, c0 has a non-degenerate expected utility representation U that is

unique up to a positive affine transformation. Moreover, f (s) ∈ c( f (s), g(s))⇐⇒U( f (s))≥U(g(s)).

Proof. Consider binary relation ⪰c0⊆ H0 ×H0 given by p ⪰c0 q if p ∈ c0({p, q}). Axioms α and
C-β implyWARP for c0, thus ⪰c0 is complete and transitive. The C-Independence for c0(·) implies
Independence for ⪰c0 . Act Continuity implies {q ∈ H | p ⪰c0 q} is closed, and Menu Continuity

implies {q ∈ H | p ⪯c0 q} is closed ∀p ∈ H0; these statements imply the Archimedean continuity
of ⪰0. The expected utility representation follows from the Mixture Space Theorem. Since C-

Non-Degeneracy implies p ̸⪰0 q for some p, q, this representation is non-degenerate. The last
assertion follows from the definition of U . □
Lemma 2 allows us to find prizes x∗ and x∗ such that u∗ ≡U(x∗)>U(x∗)≡ u∗, where we abused
notations by identifying prize x with lottery δx. Given menu B, denote by

x(B) = arg max
x∈

{
x
∣∣∃ f ∈B,s∈S: f (s)(x)>0

}
∪{x∗}

U(x), x(B) = arg min
x∈

{
x
∣∣∃ f ∈B,s∈S: f (s)(x)>0

}
∪{x∗}

U(x)

and u(B) =U(x(B)), u(B) =U(x(B)). Note that the set
{
x
∣∣∃ f ∈ B, s ∈ S : f (s)(x) > 0

}
is finite by

the definition of the menu, thus the introduced above quantities are well-defined. We will also
sometimes omit the dependence of x, x, u, u on B when it will not cause confusion.

Lemma 3. If c(·) satisfies Axioms 1-7, then it satisfiesMonotonicity: ∀ f , g ∈ H, ∀A ∈K if f (s) ∈
c({ f (s), g(s)}) ∀s ∈ S then (i) g ∈ c(A) =⇒ f ∈ c(A∪ { f }); (ii) f ∈ A =⇒ c(A)⊆ c(A∪ {g}).

Proof. Let f (s) ∈ c({ f (s), g(s)}) ∀s ∈ S. Then by Lemma 2, U( f (s)) ≥ U(g(s)) ∀s ∈ S. Given
menus A, B, and act f , denote by

A0.5 ≡ 0.5A+0.5 · (0.5x(B)+0.5x(B)), f0.5 ≡ 0.5 f +0.5 · (0.5x(B)+0.5x(B))

Proof of (i). Consider B = A∪{ f } and g ∈ c(A), then by C-Independence, g0.5 ∈ c(A0.5). Consider
f n
0.5 ≡ (1−1/n) f0.5 + (1/n)x for n = 1,2, ... Then ∀s ∈ S we have:

U( f n
0.5(s)) =

(
1− 1

n

)
·
(U( f (s))

2
+ u+u

4

)
+ u

n
≥ U( f (s))

2
+ u−u

4n
> U( f0.5(s))≥U(g0.5(s))

By Lemma 2, g0.5(s) ̸∈ c({g0.5(s), f n
0.5(s)}) ∀s ∈ S. Strict Monotonicity implies g0.5 ̸∈ c({g0.5, f n

0.5}),
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then by α, we have g0.5 ̸∈ c(A0.5 ∪ { f n
0.5}). By Aizerman’s Property, f n

0.5 ∈ c({A0.5 ∪ f n
0.5}). Since

f n
0.5 −→ f0.5, by Act Continuity, f0.5 ∈ c(A0.5 ∪ { f0.5}). By C-Independence, f ∈ c(A∪ { f }).

Proof of (ii). Consider B = A ∪ {g}, f ∈ A, and h ∈ c(A). By C-Independence, h0.5 ∈ c(A0.5).
Consider gn

0.5 ≡ (1−1/n) f0.5 + (1/n)x for n = 1,2, .... Then ∀s ∈ S we have:

U(gn
0.5(s)) =

(
1− 1

n

)
·
(U(g(s))

2
+ u+u

4

)
+ u

n
≤ U(g(s))

2
− u−u

4n
< U(g0.5(s)) ≤ U( f0.5(s))

By Lemma 2, gn
0.5(s) ̸∈ c({gn

0.5(s), f0.5(s)}) for all s ∈ S, by Strict Monotonicity, gn
0.5 ̸∈ c({gn

0.5, f0.5}),
by α, we have gn

0.5 ̸∈ c(A0.5 ∪ {gn
0.5}). By Aizerman’s Property, h0.5 ∈ c(A0.5 ∪ {gn

0.5}). Next,
A0.5 ∪ {gn

0.5} −→ A0.5 ∪ {g0.5}, hence by Menu Continuity, h0.5 ∈ c(A0.5 ∪ {g0.5}). Finally, by C-

Independence, h ∈ c(A∪ {g}). □
Let us show that it is without loss of generality to focus on acts with a binary set of prizes {x∗, x∗}.

Lemma 4. If Axioms 1-7 hold for c(·), then ∀A ∈K ∀ f ∈ A, f ∈ c(A)⇐⇒ TA( f ) ∈ c(TA(A)), where

TA( f ) = (αsx∗ + (1−αs)x∗)s∈S , αs = λ(A) ·U( f (s))+ (1−λ(A)) · (0.5u∗+0.5u∗)−u∗
u∗−u∗

, λ(A) =

0.1 ·min
{

1,
u∗−u∗

|u(A)−0.5u∗−0.5u∗|
,

u∗−u∗
|u(A)−0.5u∗−0.5u∗|

}
, and TA(B)= {TA(g)|g ∈ B}.

Proof. First, note that λ ∈ [0,0.1], and αs ∈ [0.4,0.6], thus TA( f ) is a well-defined act, and TA(A)

is a set of acts. SinceU(·) is continuous, so does TA ; hence, since A is compact, Tλ(A) is compact
as well. Note also that acts in TA(A) yield only two prizes. Therefore, TA(A) is a menu.

Denote by f ⪰∗ g if U( f (s))≥U(g(s)), and f ∼ g if [ f ⪰∗ g and g ⪰∗ f ].

Claim 1. Let g ∈ B, h ∼ g. If g ∈ c(B), c(B∪ {h})= c(B)∪ {h}; if g ̸∈ c(B), then c(B∪ {h})= c(B).

Proof of Claim 1. Let g ∈ c(B). If h ̸∈ c(B∪ {h}), by Aizerman’s Property, g ∈ c(B∪ {h}), and by
Monotonicity, h ∈ c(B∪ {h}). Since g ⪰∗ h, by Monotonicity, c(B) ⊆ c(B∪ {h}). By α, c(B∪ {h}) =
c(B)∪ {h}. Let g ̸∈ c(B). If h ∈ c(B∪ {h}), then by Monotonicity, g ∈ c(B∪ {h}), and by α, g ∈ c(B),
contradiction. Hence, h ̸∈ c(B∪ {h}), and by Aizerman’s Property and α, c(B∪ {h})= c(B). □
Claim 2. Let {h1, ...,hk}⊂ H. Assume ∀i ∈ {1, ...,k} ∃g i ∈ A: g i ∼ hi. Then:

c(A∪ {h1, ...,hk}) = c(A)∪{
h ∈ {h1, ...,hk}

∣∣ ∃g ∈ c(A) : h ∼ g
}

Proof of Claim 2. Let us use the induction in k = 0,1, ... When k = 0, the statement c(A)= c(A)

is true. For the induction step, if hk+1 ∼ g for g ∈ A, then the statement follows from Claim 1
and the induction hypothesis. If hk+1 ∼ hi for i ∈ {1, ...,k}, then by the induction hypothesis and
transitivity of ∼, there is g i ∈ A such that hk+1 ∼ g i and the same argument applies. □
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Since A is compact, ∃Fn: Fn ⊆ A ⊆ ⋃
f ∈Fn

{g ∈ H| d(g, f )< 1/n}. Denote by Fn ≡
n⋃

m=1
Fm.

Claim 3. (i) Fn ∪TA(A)−→ A∪TA(A), (ii) A∪TA(Fn) −→ A∪TA(A).

Proof of Claim 3. Statement (i) is straightforward. Next, note that for any s ∈ S, the mapping
f →U( f (s)) is uniformly continuous on A, since U(·) is linear, u(A) ≤U( f (s)) ≤ u(A), and A is
compact. It follows that f → TA( f ) is uniformly continuous on A, implying

ρ(A∪TA(Fn), A∪TA(A)) = max
h∈A∪TA(A)

min
g∈A∪TA(Fn)

d(g,h) ≤ max
h∈TA(A)

min
g∈TA(Fn)

d(g,h) −→ 0 □

Denote by gλ =λ(A)g+(1−λ(A))(0.5x∗+0.5x∗) and Aλ =λ(A)A+(1−λ(A))(0.5x∗+0.5x∗). By
construction, U(gλ(s))=U(TA(g)(s)) for all s ∈ S, hence gλ ∼ TA(g) for all g ∈ A.

Assume f ∈ c(A). By C-Independence, fλ ∈ c(Aλ). WLOG, f ∈ F1 ⊆ Fn. By Claim 2, fλ ∈ c(Aλ∪
TA(Fn)). By Claim 3 and Menu Continuity, fλ ∈ c(Aλ∪TA(A)). By Monotonicity, TA( f ) ∈ c(Aλ∪
TA(A)). By α, TA( f ) ∈ c(TA(A)).

Assume TA( f ) ∈ c(TA(A)). WLOG, f ∈ F1 ⊆ Fn. By Claim 2, TA( f ) ∈ c(TA(A)∪Fn
λ

). By Claim
3 and Menu Continuity, TA( f ) ∈ c(TA(A)∪ Aλ). By Monotonicity, fλ ∈ c(TA(A)∪ Aλ). By α,
fλ ∈ c(Aλ). By C-Independence, f ∈ c(A), proving Lemma 4. □
We say that a framed ambiguity model (U ,A ) represents c(·) on the set of menus K if for any
menu B ∈K , c(B) is given by eq. (2), (3).

Lemma 5. A framed ambiguity model (U ,A ) represents c(·) on K if and only if (U ,A ) represents

c(·) on the set of menus K ∗ consisting of acts that yield only prizes x∗, x∗.

Proof. One direction is trivial. Assume now that (U ,A ) represents c(·) on K ∗. Then Axioms
1-7 hold for the choice correspondence ĉ induced by (U ,A ) according to eq. (2), (3). Note that
ĉ(B)= c(B) for all B ∈K ∗. Therefore, by Lemma 4, f ∈ ĉ(A)⇐⇒ TA( f ) ∈ ĉ(TA(A))⇐⇒ TA( f ) ∈
c(TA(A))⇐⇒ f ∈ c(A). Hence, ĉ = c, proving the other direction. □
By Lemma 5, WLOG, X = {x∗, x∗}, U(x∗)= 1, U(x∗)= 0. In this case, the set of acts H is isomor-
phic to the hypercube [0,1]S . We will use notations z, f for general acts and H = [0,1]S . Denote
by ι= (1, ...,1) ∈ RS , then act z ∈ [0,1]S is constant if and only if z= zι for some z ∈ [0,1].

Lemma 6. Let X = {x∗, x∗} and let Menu Continuity hold. Then ∀ f ∈ H,∀A ∈K if f ∈ c(A), then

∃D ∈K :
[
A ⊆ D, f ∈ c(D), and if [D′ ∈K , D′ ̸= D, and D ⊆ D′], then f ̸∈ c(D′)

]
.

Proof. Consider the set of menusQ(A, f ) ≡ {B ∈K | f ∈ c(B) and A ⊆ B} partially ordered by set
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inclusion. Let T ⊆ Q(A, f ) be an arbitrary non-empty totally ordered set. Let C = cl (
⋃

B∈T B).
Note that C is compact since it is a closed subset of the compact set H. Therefore, for any ϵ> 0,
there is a finite set { f i}i∈{1,...,N} ⊆ C such that ∀h ∈ C d( f i,h) < ϵ/3 for some f i = f i(h). Next, by
the definition of C, for any i ∈ {1, ..., N}, there is Bi ∈C and g i ∈ Bi such that d(g i, f i)< ϵ/3. Since
T is totally ordered by set inclusion, there is B̃ ∈ {B1, ...,BN } such that Bi ⊆ B̃ for all i = {1, ..., N}.
Since B̃ ⊆ C, it follows

ρ(B̃,C) = sup
h∈C

(
inf
g∈B̃

d(g,h)

)
≤ sup

h∈C

(
d(g i, f i(h))+d( f i(h),h)

) ≤ ϵ/3+ϵ/3< ϵ

Consider sequence ϵ−→ 0, and the associated menus B̃ϵ ∈ T with ρ(B̃ϵ,C) < ϵ. Since f ∈ c(B̃ϵ),
B̃ϵ −→ C, and C ∈ K , by Menu Continuity, f ∈ c(A). Thus, every non-empty totally ordered
subset T of Q(A, f ) has an upper bound C ∈Q(A, f ). Note also that A ∈Q(A, f ) ̸=∅. By Zorn’s
Lemma, Q(A, f ) has at least one maximal element D. □
Given λ ∈ [0,1], let fλ = λ f + (1−λ)0.5ι, Bλ = λB+ (1−λ)0.5ι. For f ∈ H0.2, let L ( f ) ≡ {

A ∈
K | f ∈ c(A) and [A ⊆ A′ and f ∈ c(A′) =⇒ A′ = A]

}
. Since f ∈ c({ f }), by Lemma 6, L ( f ) ̸=∅.

For A ∈L ( f ), denote by
a(A)=max {b ∈ [0,1] | b · ι ∈ A} (6)

Since A is compact and 0ι ∈ A, by Monotonicity, a(A) is well-defined; moreover, 0.4 ≤ a(A) ≤
since f ∈ H0.2. Denote by |z| =maxs∈S |zs|, for v ∈RS : ∑

s∈S vs = 0 and |v| = 1, define

JA(v)=−max {b ∈R | a(A) · ι+0.1 ·v+0.1b · ι ∈ A} (7)

Monotonicity, Strict Monotonicity and maximality of A ∈ L ( f ) imply that JA(v) ∈ [−1,1]. For
z ∈RS , denote by z = |S|−1 ·∑s∈S(z)s, z⊥ = z− z · ι. Define I :RS →R by

IA(z) ≡

 z + |z⊥| · JA

(
z⊥
|z⊥|

)
if z⊥ ̸= 0

z if z⊥ = 0
(8)

The following lemma is an analogue of Lemma 3.3. in Gilboa and Schmeidler (1989).

Lemma 7. Let Axioms 1-7 hold. Then ∀ f ∈ H0.2 ∀A ∈L ( f ):

(a.i): ∀z ∈ H0.4 z ∈ A ⇐⇒ IA(z)≤ a(A);

(a.ii): IA( f )= a(A);

(b.i): IA(·) is monotone: z≥ z′ =⇒ IA(z)≥ IA(z′);

(b.ii): IA(·) is positively homogeneous: IA(αz) = αIA(z) for all α≥ 0;

(b.iii): IA(·) is concave: IA(λz+ (1−λ)z′)≥λIA(z)+ (1−λ)IA(z′) for all λ ∈ (0,1);
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(b.iv): IA(·) is C-additive: IA(z+β · ι)= IA(z)+ IA(β · ι) for all β ∈R;
(b.v): IA(·) is normalized: IA(ι)= 1.

Proof. Statements (b.ii), (b.iv), and (b.v) hold by the definition of I . Let us prove (a.i). Consider
arbitrary z ∈ H0.4 = [0.3,0.7]S . If z⊥ = 0, z ∈ A ⇐⇒ IA(z) ≤ a(A) by the definition of a(A). If
|z⊥| = 0.1, z ∈ A ⇐⇒ IA(z) ≤ a(A) by the definition of J. If z− a(A) > |z⊥|, then z >> (a(A)+
0.5(z−a(A)−|z⊥|))ι>> a(A)ι. Thus f ̸∈ c(A∪ {(a(A)+0.5(z−a(A)−|z⊥|))ι}) by the definition of
a(A), and byMonotonicity, f ̸∈ c(A∪{z}), implying z ̸∈ A. Also, IA(z)≥ z−|z⊥| > a(A), hence, z ∈
A ⇐⇒ IA(z)≤ a(A). If z−a(A)<−|z⊥|, then z≤ a(A)ι ∈ A. Hence, f ∈ c(A∪{z}) byMonotonicity,
and z ∈ A by maximality of A. Also, IA(z)≤ z+|z⊥| ≤ a(A), thus z ∈ A ⇐⇒ IA(z)≤ a(A).

Consider the last case |z⊥| ̸= 0,0.1 and |z− a(A)| ≤ |z⊥|. Let y = (
a(A)+ 0.1z−0.1a(A)

|z⊥|
)
ι+0.1 z⊥

|z⊥| .
Note that y ∈ H0.2 ⊂ H, |y⊥| = 0.1, and y+bι ∈ A ⇐⇒ IA(z)≤ a(A)−b for b ∈ [−0.1,0.1].

Suppose |z⊥| < 0.1, then z = λy+ (1−λ)a(A) · ι, where λ = 10|z⊥| ∈ (0,1). Let IA(z) ≤ a(A),
then {y,a(A) · ι} ⊆ A, and by No C-Hedging, f ∈ c(A ∪ {z}), thus z ∈ A by maximality of A. Let
IA(z) > a(A), consider ϵ = 0.01min

{
1, 1−λ

λ
, IA(z)−a(A)

λ

}
> 0, then y− ϵι,

(
a(A)+ λ

1−λϵ
)
ι ∈ H\A.

By maximality of A, f ̸∈ c(A ∪ {y− ϵι}), f ̸∈ c
(
A∪{(

a(A)+ λ
1−λϵ

)
ι
})
. Since z = λ(y− ϵι)+ (1−

λ)
(
a(A)+ λ

1−λϵ
)
ι, by Indirect Ambiguity Aversion, f ̸∈ c(A∪ {z}), hence z ̸∈ A.

Suppose |z⊥| > 0.1, then y = λz+(1−λ)a(A)·ι, where λ= (10|z⊥|)−1 ∈ (0,1). Let z ∈ A, then byNo
C-Hedging, f ∈ c(A∪{y}), hence y ∈ A by maximality of A, and IA(z)≤ a(A). Let z ̸∈ A; since A is
closed, and z ∈ H0.4, ∃ϵ> 0: z−ϵ · ι,(a(A)+ λ

1−λϵ
)
ι ∈ H\A. By maximality of A, f ̸∈ c(A∪ {z−ϵι})

and f ̸∈ c
(
A∪{(

a(A)+ λ
1−λϵ

)
ι
})
. Since y = λ(z−ϵι)+(1−λ)

(
a(A)+ λ

1−λϵ
)
ι, by Indirect Ambiguity

Aversion, f ̸∈ c(A∪ {y}), hence y ̸∈ A, and IA(z)> a(A), proving (a.i).

Let us prove (a.ii). If IA( f )> a(A), by (a.i), f ̸∈ A, contradicting f = c(A). If IA( f )< a(A), ∃ϵ> 0:
f̂ = (1−ϵ) f +ϵι>> f , IA( f̂ )< a(A). Hence, f̂ ∈ A. By α, f ∈ c({ f , f̂ }), violating Strict Monotonicity.

Let us prove (b.i). If z = z′ = 0, IA(z) = 0 ≥ 0 = IA(z′). Otherwise, let t = 0.01 · (max{|z|, |z′|})−1,
z̃ = tz+ (a(A)− IA(tz)) ι, w = tz′+ (a(A)− IA(tz)) ι. Then IA(z̃)= a(A), w≤ z̃, and z̃,w ∈ H0.4.
Hence, z̃ ∈ A, by Monotonicity, f ∈ c(A∪ {w}), by maximility of A, w ∈ A, hence by (a), IA(w) ≤
a(A)= IA(z̃). By (b.ii), (b.iv), (b.v), IA(z)≥ IA(z′).

Let us prove (b.iii). If z = z′ = 0, IA(λz+ (1−λ)z′) = 0 = λIA(z)+ (1−λ)IA(z′). Otherwise, let
t = 0.01 · (max{|z|, |z′|})−1, z̃ = tz+ (a(A)− IA (tz)) ι, q = tz′+ (

a(A)− IA
(
tz′)) ι. Let ϵ= 0.001,

then z̃,q ∈ H0.4; by (a), z̃,q ̸∈ A, thus, f ̸∈ c(A∪{z̃+ϵι}) and f ̸∈ c(A∪{z̃′+ϵι}); by Indirect Ambiguity
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Aversion, f ̸∈ c(A∪ {λ(z̃+ ϵι)+ (1−λ)(q+ ϵι)}). By convexity of H0.4, maximality of A, and other
proven statements, λ(z̃+ϵι)+ (1−λ)(q+ϵι) ∈ H0.4\A =⇒ IA(λ(z̃+ϵι)+ (1−λ)(q+ϵι))> a(A)=⇒
IA(λz̃+(1−λ)q)≥ a(A)=⇒ IA

(
λ [tz+ (a(A)− IA (tz)) ι]+ (1−λ)

[
tz′+ (

a(A)− IA
(
tz′)) ι])≥ a(A)

=⇒ IA
(
λtz+ (1−λ)tz′)≥λIA (tz)+(1−λ)IA

(
tz′)=⇒ IA

(
λz+ (1−λ)z′)≥λIA (z)+(1−λ)IA

(
z′),

proving that I is concave. □
Lemma 8. Let I be the set of monotone positively homogeneous concave constant additive and nor-

malized functions I : RS →R, and Π be the set of non-empty convex and closed sets of probabilities

P ⊆△S. Then the mapping τ : I →Π given by τ(I) =
{
µ ∈△S

∣∣∣ ∑
s∈S

µ(s)zs ≥ I(z) ∀z ∈RS
}
is a

bijection, and τ−1(P)(z)≡min
µ∈P

∑
s∈S

µ(s)zs. Moreover, Wτ(IA)( f )= IA( f ) ∀ f ∈ H.

Proof. This is a well-known statement. The details are given in the Online Appendix. □
Lemma 9. If Axioms 1-7 hold for c(·), then (U , cl(A )) represents c(·), whereU is defined by Lemma

2, and A = {
τ(IB)

∣∣ f ∈ H0.2,B ∈L ( f )
}
.

Proof. Let f ∈ c(A), then f0.1 ∈ c(A0.1). By Lemma 6, ∃B ∈ L ( f0.1) : A0.1 ⊆ B. By Lemmas 7,8,
IB( f0.1)= a(B)≥ IB(g0.1)=⇒Wτ(IB)( f )= IB( f )≥ IB(g)=Wτ(IB)(g) ∀g ∈ A. Finally, τ(IB) ∈A .

Let P ∈ A and let WP (g) ≥ WP (h) ∀h ∈ A. Then WP (g0.1) ≥ WP (h0.1) ∀h0.1 ∈ A0.1. Hence, ∃ f ∈
H0.2 ∃B ∈L ( f ) : P = τ(IB). Therefore, IB(g0.1) ≥ IB(h0.1) ∀h0.1 ∈ A0.1. Denote by λ= 5

4 (a(B)−
0.2g0.1); since 0.4 ≤ a(B) ≤ 0.6, 0.45 ≤ g0.1 ≤ 0.55, then λ ∈ [0.3625,0.6375]. For h ∈ A, let
ĥ = 0.2g0.1+0.8λι; for ϵ ∈ (0,0.1), let ĝϵ = 0.2g0.1+0.8(λ+ϵ)ι. Then IB(ĥ)≤ IB( ĝ)= a(B)< IB( ĝϵ)

∀h ∈ A ∀ϵ ∈ (0,1). Hence, ĝϵ ̸∈ B; by maximality of B, f ̸∈ c(B∪ { ĝϵ}); by Aizerman’s Property,
ĝϵ ∈ c(B∪{ ĝϵ}); by Act Continuity, ĝ ∈ c(B∪{ ĝ})= c(B). By maximality of B, 0.2A0.1+0.8λι⊆ B;
by α, ĝ ∈ c(0.2A0.1 +0.8λι); by C-Independence, g0.1 ∈ c(A0.1), g ∈ c(A).

Claim 4. If P ∈ cl(A )\A and WP (g)≥WP (h) ∀h ∈ A, then g ∈ c(A).

Proof of Claim 4. Consider Pk −→ P , Pk ∈ A . Let gn
0.1 = (

1− 1
n
)

g0.1 + 1
n ι, then WP (gn

0.1) >
WP (g0.1) ≥ WP (h0.1) ∀h ∈ A. By continuity of W , WPk(n)(gn

0.1) ≥ WP (h0.1) ∀h ∈ A for k(n) large
enough. By the proof in the paragraph above, gn

0.1 ∈ c(A0.1 ∪ {gn
0.1}). By Act Continuity, g0.1 ∈

c(A0.1 ∪ {g0.1})= c(A0.1). By C-Independence, g ∈ c(A), proving the Claim and the Lemma. □
Lemmas 5, 9 prove the “if” direction of the Proposition. ■
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Proof of Proposition 2

For each of the axioms, we give examples when the corresponding axiom is violated, while other
axioms hold. For brevity, the proofs that other axioms hold are omitted; an interested reader can
find them in the Online Appendix.

Framed Uncertainty. Let {x, y, z}⊆ X . Consider

c(A) =
{

f ∈ A
∣∣∣ ∑

s∈S
f (s)(x)≥ ∑

s∈S
g(s)(x) ∀g ∈ A or

∑
s∈S

f (s)(y)≥ ∑
s∈S

g(s)(y) ∀g ∈ A
}

Since c({x,0.5x+0.5y})= {x,0.5x+0.5y} and c({x,0.5x+0.5y, y})= {x, y}, C-β, and, hence, Framed

Uncertainty is violated. Other axioms hold; in particular, z ̸∈ c({x, z}), so C-Non-Degeneracy holds.

C-Independence. Let {x, y} ⊆ X , c(A) = arg max
f ∈A

W( f ), where W( f ) = f (1)(x)+ f (2)(x)
1+ f (2)(x)

. Let f =
(0.4x+0.6y, y, ...) and g = (y, x, ...). Then W( f ) = 0.4 < 0.5 = W(g), hence c({ f , g}) = {g}. Next,
consider f ′ = 0.5 f +0.5x = (0.7x+0.3y,0.5x+0.5y, ...) and g′ = 0.5g+0.5x = (0.5x+0.5y, x, ...).
Then W( f ′) = 1.2/1.5 = 4/5 > 3/4 = 1.5/2.0 = W(g′), hence c(0.5{ f , g}+0.5{p}) = { f ′} = {0.5 f +
0.5p}, contradicting C-Independence. Other axioms hold.

No-C-Hedging. Let x ∈ X , 0<µ≤µ≤ 1. Consider c(B)= ⋃
k∈[0,∞)

arg max
f ∈B

Wk( f ), where

Wk( f )=min
{
(1−µ) f (1)(x)+µ f (2)(x), (1−µ) f (1)(x)+µ f (2)(x), f (1)(x)+µk

}
Consider f , g ∈ H, p ∈ H0 with f (1)(x) = 0.2, f (2)(x) = 0.3, g(1)(x) = 0.2, g(2)(x) = 1, p(x) =
0.2+0.1µ. Then Wk( f )= 0.2+µ ·min{0.1,k}, Wk(g)= 0.2+µ ·min{1,k}, Wk(p)= 0.2+µ ·0.1, and
Wk(0.5g+0.5p) = 0.2+µ ·min{0.45,k+0.05} > Wk( f ). Hence, k = 0.1 justifies the choice of f

from the menu A = { f , g, p}, but f is not the best in the menu A∪{0.5g+0.5p} for any k ∈ [0,∞).
Thus, No-C-Hedging fails. Other axioms hold.

Strict Monotonicity. Let x ∈ X , c(A) = arg max
f ∈A

W( f ), W( f ) = 2 f (1)(x) − f (2)(x). Consider

f , g ∈ H with f (1)(x) = f (2)(x) = 0.3, g(1)(x) = 0.4, g(2)(x) = 0.7. Then W( f ) = W( f (1)) =
W( f (2)) = 0.3, and W(g) = 0.1, W(g(1)) = 0.4, W(g(2)) = 0.7. Hence, the pair f , g violates Strict
Monotonicity. Other axioms hold.

Indirect Ambiguity Aversion. Let x ∈ X , c(A) = arg max
f ∈A

W( f ), W( f ) = max{ f (1)(x), f (2)(x)}.

Consider h ∈ H0, f , g ∈ H with h(x) = 0.7, f (1)(x) = 1, f (2)(x) = 0, g(1)(x) = 0, g(2)(x) = 1,
and A = {h}. Then h ̸∈ c(A ∪ { f }), h ̸∈ c(A ∪ {g}), but h ∈ c(A ∪ {0.5 f +0.5g}), violating Indirect

Ambiguity Aversion. Other axioms hold.
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Continuity. Let x ∈ X , c(A) = { f ∈ A| f ⪰ g ∀g ∈ A}, where f ⪰ g if either f (1)(x) > g(1)(x), or
[ f (1)(x)= g(1)(x) and f (2)(x)≥ g(2)(x)]. Consider f , g, fn ∈ H, n = 1,2, .. with g(1)(x)= g(2)(x)=
0.5, fn(1)(x) = 0.5+1/n, fn(2)(x) = 0, f = limn→∞ fn (pick fn such that the limit exists). Then
fn ∈ c({ fn, g}), but f ̸∈ c({ f , g}), violating Continuity. Other axioms hold.

C-Non-Degeneracy. Consider c(A)= A; C-Non-Degeneracy fails, and other axioms hold. ■

Proof of Theorem 1

By Lemma 2, U is unique up to the positive affine transformation. By Lemma 5, WLOG, X =
{x∗, x∗}; normalizing U(x∗)= 1, U(x∗)= 0, we get H = [0,1]S , WP (z)= τ−1(P)(z) (by Lemma 8).

Lemma 10. If (U ,A ′) represents c(·), then A ⊆A ′, where A = {
τ(IB)

∣∣ f ∈ H0.2,B ∈L ( f )
}
.

Proof. Consider arbitrary f ∈ H0.2, A ∈ L ( f ). Let C ′ = {P ′ ∈ A ′|A ⊆ B(P ′)}, where B(P ′) =
{z ∈ H|τ−1(P ′)( f ) ≥ τ−1(P ′)(z)}. Since f ∈ c(A), then C ′ ̸= ∅. If B(P ′) ̸= A for P ′ ∈ C ′, then
f ∈ c(B(P ′)) (note that B(P ′) is closed, hence B(P ′) ∈ K ), contradicting maximality of A. Thus,
B(P ′) = A for all P ′ ∈ C ′, and τ−1(P ′)( f ) = a(A) = IA( f ). Consider arbitrary z ∈RS . If z = 0,
then IA(z) = 0 = τ−1(P ′)(z). Otherwise, w = 0.1 z

|z| +0.5ι ∈ H0.2, and w+0.4bι ∈ H ∀b ∈ [−1,1].
Also, w−0.4ι << 0.4ι ≤ a(A)ι ≤ 0.6ι << w+0.4ι. Then IA(w−0.4ι),τ−1(P ′)(w−0.4ι) < a(A) <
IA(w+0.4ι),τ−1(P ′)(w+0.4ι). Moreover, since B(P ′)= A, IA(w+0.4bι)≥ a(A) ⇐⇒ τ−1(P ′)(w+
0.4bι) ≥ a(A) ∀b ∈ [−1,1]. Therefore, ∃b ∈ [−1,1]: IA(w+0.4bι) = a(A) = τ−1(P ′)(w+0.4bι).
Thus, IA(z)= τ−1(P ′)(z) ∀z ∈RS , hence τ(IA)= P ′ ∈A ′. □
Consider any representation (U ,A ′). By Lemma 10, cl(A )⊆ cl(A ′)=A ′; by Lemma 9, (U , cl(A ))

represents c(·). Hence, cl(A ) is the minimum family of frames. Let B =
{
P ∈ Π

∣∣∣∀A ∈ K ∀ f ∈
A

[
WP ( f ) ≥ WP (g)∀g ∈ A =⇒ f ∈ c(A)

]}
. By argument identical to the one used in the proof

of Claim 4, we get cl(B) = B, hence (U ,B) is a framed ambiguity model; let c′′ be its induced
choice correspondence. Since cl(A ) ∈ cl(B) = B, then c ⊆ c′′; by the definition of B we also
have c′′ ⊆ c and A ′ ∈B. Therefore, B is the maximum family of frames. Next, let D be a closed
family of frames such that cl(A ) ⊆ D ⊆ B, and let c′ be the choice correspondence represented
by (U ,D). Then c ⊆ c′ ⊆ c′′ = c, hence c′ = c, proving Theorem 1 except of the last statement.

Lemma 11. There exists a coherent intersection P of a family C if and only if

IP (z) = max
P ′∈C

IP ′(z) ∀z ∈RS, where IQ(z) = τ−1(Q)(z) = min
µ∈Q

∑
s∈S

µ(s) · zs

Proof. Let P be a coherent intersection of C . For an arbitrary z ∈RS , let t be its component
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orthogonal to (1, ...,1). If t = 0, IP̃ (z) does not depend on P̃ . Otherwise, the projections of P

and C on the linear subspace Tt = {x ∈RS | ∃λ ∈R : x = λt} are an interval [at(P),bt(P)] and
a collection of intervals

{
[at(P ′),bt(P ′)]

}
P ′∈C . Then, WLOG, IP ′(t) = at(P ′) for all P ′ ∈ C ∪P .

Since P is a coherent intersection, then [at(P),bt(P)] = ⋂
P ′∈C

[at(P ′),bt(P ′)] ̸=∅. It follows that

IP (z)−
S∑

i=1
zs = IP (t) = at(P) = max

P ′∈C
at(P ′) = max

P ′∈C
IP ′(t) = max

P ′∈C
IP ′(t)−

S∑
i=1

zs

proving the only if direction of Lemma 11.

Claim 5. (i) P ⊆ P ′ if and only if IP (z) ≥ IP ′(z) for all z ∈RS , (ii) P ⊊ P ′ if and only if IP (z) ≥
IP ′(z) for all z ∈RS and ∃ẑ ∈RS : IP (ẑ)> IP ′(ẑ).

Proof Claim 5. The claim follows from Lemma 8. □
Claim 6. If IP (z)=max

P ′∈C
IP ′(z) for all z ∈RS , then P =⋂

P ′∈C P ′ ̸=∅.

Proof Claim 6. Since ∀P ′ ∈ C , IP (z) =max
P ′∈C

IP ′(z) ≥ IP ′(z)∀z ∈RS , by Claim 5, P ⊆ P ′ for all

P ′ ∈C , hence P ⊆⋂
P ′∈C P ′ ̸=∅. If P ̸= P̃ =⋂

P ′∈C P ′, then by Claim 5, ∃z ∈RS : IP (z) > IP̃ (z) ≥
max
P ′∈C

IP ′(z), in contradiction. □

Claim 7. For any linear subspace T of RS , pro jT
(⋂

P ′∈C P ′
)
⊆⋂

P ′∈C pro jT(P ′).

Proof Claim 7. If x̂ ∈ pro jT
(⋂

P ′∈C P ′
)
, then ∃x ∈ P : x̂ = pro jT(x). Hence, x ∈ P ′ for all P ′ ∈C

and x̂ ∈⋂
P ′∈C pro jT(P ′). □

Assume IP (z)=max
P ′∈C

IP ′(z). Towards a contradiction, assume pro jT
(⋂

P ′∈C P ′
)
⊊⋂

P ′∈C pro jT(P ′)

for some linear subspace T. By the Separating Hyperplane Theorem applied to the closed con-
vex set P̂ = pro jT

(⋂
P ′∈C P ′

)
and point µ̂ ∈⋂

P ′∈C pro jT(P ′)\P̂ ̸=∅, there is a vector t̂ ∈T∗ =T
such thatminν̂∈P̂

∑
i t̂iν̂(i)>∑

i t̂iµ̂(i)≥maxP̂ ′∈pro jT(C ) minν̂∈P̂
∑

i t̂iν̂(i). Since θt̂ :RS →R given
by θt̂(z) =∑

i t̂i
(
pro jT(z)

)
i is a linear function, there is t ∈RS such that θt̂(z) =∑

s∈S tszs; then,
IP (z)<max

P ′∈C
IP ′(z), in contradiction. Lemma 11 is proven. □

Suppose that P is a coherent intersection of a closed collection C ⊆A , where A is the minimum
family of frames. Consider arbitrary A ∈K and f ∈ A such that WP ( f )≥WP (g) for all g ∈ A. By
Lemma 11, there is P̃ ∈C such that WP̃ ( f )=WP ( f )≥WP (g)=max

P ′∈C
WP ′(g)≥WP̃ (g) for all g ∈ A.

Since P̃ ∈A , f ∈ c(A); hence, P ∈B, where B is the maximum family of frames.

Conversely, suppose P ∈B; thus, [WP ( f )≥WP (g)∀g ∈ A =⇒ f ∈ c(A)]. Let

V = {
v ∈RS∣∣ ∑

s∈S
vs = 0,max

s∈S
|vs| = 1

}
, B = {

z ∈ H
∣∣WP (z)≥ 0.5

}
, zv = (0.5−0.01WP (v)ι)+0.01v
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for v ∈ V . Note that zv ∈ H and WP (zv) = 0.5. Hence, zv ∈ B, and ∀v ∈ V∃Pv ∈ A such that
WPv(zv)≥WPv(z)∀z ∈ B. Since o.5ι ∈ B, WPv(zv)≥WPv(0.5ι)= 0.5. Towards a contradiction, as-
sume WPv(zv)> 0.5. Consider g = (0.5−0.02WP (v))+0.02v ∈ H; since WP (g)= 0.5, g ∈ B. How-
ever, zv = 0.5g+0.5 ·0.5ι, hence WPv(zv)= 0.5WPv(g)+0.25, and WPv(g)=WPv(zv)+ (WPv(zv)−
0.5) > WPv(zv), contradicting the definition of Pv. Therefore, WPv(zv) = 0.5 ≥ WPv(zv′) for all
v,v′ ∈ V . Since WP̃ is positively homogeneous, and WP̃ (0.5ι) = 0.5 for all P̃ ∈Π, for any z ∈RS

there exists P z ∈ A such that WP (z) = WP z (z), and WP (z′) ≥ WP z (z′) for all z′ ∈RS ; denote by
C z ̸=∅ the collection of all frames in A that has this property, and let C =⋃

z∈Z C z. Then

WP (z)=max
P ′∈C

WP ′(z) ∀z ∈RS

Since WP̃ is continuous with respect to P̃ , cl(C ) = C . Therefore, P is the coherent intersection
of a closed collection of frames C ⊆A , where A is the minimum family of frames, proving the
last assersion of the Theorem. ■

Proof of Proposition 3

The proof that |A | = 1 implies all of the considered properties is straightforward and omitted.
Assume |A | > 1. Then there are P1,P2 ∈A , f ∈ H, and q1, q2 ∈ H0 such that U(q1) =WP1( f ) >
WP2( f ) =U(q2). Note that c({q2, f }) = {q2, f }, but c({q1, q2, f }) = {q1, f }, thus β is violated, and,
therefore, WARP is violated.

Consider g = 0.25q1 +0.75q2, h = 0.5 f +0.5g = 0.5 f +0.125q1 +0.375q2, w = 0.5 f +0.25q1 +
0.25q2. Then WP1( f ) > WP1(w) > WP1(h) > WP1(g) and WP2(g) = WP2(w) > WP2(h) > WP2( f ).
Hence, f , g ∈ c({ f , g,w,0.5 f +0.5g}). Since w >> h, h ̸∈ c({ f , g,w,0.5 f +0.5g}), violating Ambi-

guity Aversion. Considering A = {w} shows the violation of Direct Ambiguity Aversion as well.

Consider p = 0.5q1 +0.5q2 ∈ H0. Since WP2(h) > WP2( f ), h ∈ c({h, f }). Since WP1(h) > WP1(p),
h ∈ c({h, p}). Since 0.5 f +0.5p = w >> h, h ̸∈ c({h,0.5 f +0.5p}), violating Pairwise No-C-Hedging.

Towards a contradiction, assume Normality holds. Let f ,h ∈ H, p ∈ H0, λ ∈ (0,1) be such that
h ∈ c({h, f }) and h ∈ c({h, p}). By Normality, h ∈ c({h, f , p}), by No-C-Hedging, h ∈ c({h, f , p,λ f +
(1−λ)p}), by α, h ∈ c({h,λ f + (1−λ)p}); thus, Pairwise No-C-Hedging holds, in contradiction.
Finally, α and γ are equivalent to Normality, hence γ is violated as well. ■
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Proof of Proposition 4

If U1 is a positive affine transformation of U2 and A1 ⊆ (A2)coh, then for all B ∈K we have

c1(B) = ⋃
P∈A1

arg max
f ∈B

WP ( f ) ⊆ ⋃
P∈(A2)coh

arg max
f ∈B

WP ( f ) = c2(B)

Hence, DM 1 is more decisive than DM 2. Conversely, assume DM 1 is more decisive than DM 2.

Lemma 12. Let c1 and c2 have framed ambiguity representations (U1,A1) amd (U2,A2). Assume

that for all f , g ∈ H we have c2({ f , g}) = { f } =⇒ c1({ f , g}) = { f }. Then U1 and U2 are positive

affine transformations of each other.

Proof. Since U2 is nondegenerate, ∃x, y ∈ △X : U2(x) > U2(y); then c2({x, y}) = {x}, c1({x, y}) =
{x}, and U1(x) > U1(y). Similarly, ∀p, q ∈ △X , if U2(p) > U2(q), then U1(p) > U1(q). Suppose
now U2(p)=U2(q). Let

α= 0.01 · (max{|U2(p)|, |U2(y)|,1}
)−1, β= 0.5[U2(x)−U2(y)]−α(U2(p)−U2(y))

(1−α)(U2(x)−U2(y))
then α,β ∈ (0,1). For γ ∈ (0,1), define pαγ = αp+ (1−α)(βx+ (1−β)y), qαγ = αq+ (1−α)(βx+
(1−β)y), then for ϵ > 0 small enough, β− ϵ,β+ ϵ ∈ (0,1), and U2(pα

β−ϵ) < 0.5U2(x)+0.5U2(y) <
U2(qα

β+ϵ). It follows U1(pα
β−ϵ) < 0.5U1(x)+0.5U1(y) <U1(qα

β+ϵ). By continuity of U1, U1(pα
β
) =

U1(qα
β
), which implies U1(p) =U1(q). Hence, U2 and U1 represent the same linear preferences

on △X , and they are positive affine transformations of each other. □
By Lemma 12, WLOG, U1 =U2. Since P ∈A1 =⇒ [ f ∈ A,WP ( f ) ≥WP (g)∀g ∈ A =⇒ f ∈ c(A)],
then by Theorem 1, P ∈ (A2)coh. ■

Proof of Theorem 2

Throughout the proof IP (·)= τ−1(P)(·) is the support functional of set of beliefs P defined in (8).
We’ll first prove the supporting lemmas, and then (i)=⇒ (iii)=⇒ (ii)=⇒ (i).

For a fixed (up to a positive affine transformation) vNM expected utility function U and P ∈Π,
let WP be the associated maxmin expected utility function and f ⪰P g iff WP ( f )≥WP (g); f ≻P g

iff f ⪰P g and g ̸⪰P f .

Lemma 13. Let c1(·) and c2(·) have framed ambiguity representations (U1,A1) and (U2,A2). Then

the following statements are equivalent:

(i) For all A ∈K |c2(A)| = 1 =⇒ |c1(A)| = 1;

(ii) For all A ∈K and f ∈ H c2(A)= { f } =⇒ c1(A)= { f };
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(iii) For all f , g ∈ H c2({ f , g})= { f } =⇒ c1({ f , g})= { f };

(iv) U1 is a positive affine transformation of U2, and [ f ⪰P g ∀P ∈A2] =⇒ [ f ⪰P g ∀P ∈A1];

(v) U1 is a positive affine transformation of U2, and [ f ≻P g ∀P ∈A2] =⇒ [ f ≻P g ∀P ∈A1].

Proof. Implications (ii) =⇒ (i), (iii) are straightforward. Let (iii) hold. Towards a contradiction,
assume c2(A) = { f }, and g ∈ c1(A)\{ f }. If g ∈ c2({g, f }), ∃P ∈A2 such that WP (g) ≥ WP ( f ), then
{ f } ̸= arg maxh∈AWP (h) and c2(A) ̸= { f }. Thus, c2{g, f } = { f }. By α, g ∈ c1({g, f }), contradicting
(iii). Since c1(A) ̸=∅, c1(A)= { f }. Hence, (iii)=⇒ (ii). Now, let us prove that (i) implies (iii).

Towards a contradiction, assume c2({ f , g}) = { f }, but c1({ f , g}) = {g} for some f , g ∈ H. Since U1

is non-degenerate, ∃p, q: U1(p)>U1(q). Let f̂ = 0.5 f +0.25p+0.25q, ĝ = 0.5g+0.25p+0.25q.
By C-Independence, c2({ f̂ , ĝ}) = { f̂ }, c1({ f̂ , ĝ}) = { ĝ}. Given P ∈ Π, let W1

P and W2
P are maxmin

expected utility functions associated with U1 and U2. Denote by ϵ1 = infP∈A1

(
W1

P ( ĝ)−W1
P ( f̂ )

)
,

ϵ2 = infP∈A2

(
W2

P ( f̂ )−W2
P ( ĝ)

)
. Note that W1, W2 are continuous in P , hence, W1

P ( f )−W1
P (g)

and W2
P ( f )−W2

P (g) are uniformly continuous in P on compact sets A1 and A2. Therefore, since
W1

P ( ĝ)−W1
P ( f̂ )> 0 ∀P ∈A1 andW2

P ( f̂ )−W2
P ( ĝ)> 0∀P ∈A2, then ϵ1,ϵ2 > 0. For δ ∈ (0,1), consider

A = {
0.5g+0.5(1−δ)(0.5p+0.5q)+0.5δh

∣∣∃λ ∈ [0,1]S : h(s)=λs p+ (1−λs)q
}

Since ϵ1,ϵ2 > 0, ∃δ > 0: W1
P ( f̂ ) < W1

P (h)∀h ∈ A∀P ∈ A1, W2
P ( f̂ ) > W2

P (h)∀h ∈ A∀P ∈ A2. Let
Q ∈ A1 ̸= ∅ and B = {h ∈ A|W1

Q(h) = W1
Q( ĝ)}. Since ĝ ∈ B and |S| > 1 then |B| > 1. Hence,

|c1(B∪ { f̂ })| = |B| > 1 and |c2(B∪ { f̂ })| = |{ f }| = 1, contradicting (i); hence, (i)=⇒ (iii).

Let (iii) hold, then by Lemma 12, U1 is a positive affine transformation of U2. Next, [ f ⪰P g ∀P ∈
A2] ⇐⇒ [c2({ f , g}) = { f }] =⇒ [c1({ f , g}) = { f }] ⇐⇒ [ f ≻P g ∀P ∈ A1]. Hence, (v) holds. Con-
versely, suppose (v) holds, then [c2({ f , g}) = { f }] ⇐⇒ [ f ⪰P g ∀P ∈ A2] =⇒ [ f ≻P g ∀P ∈
A1]⇐⇒ [c1({ f , g})= { f }], proving (iii). Hence, (iii)⇐⇒(v)

Let (v) hold. WLOG, U1 = U2 = U ; let p, q be such that U(p) > U(q). Denote by f̂ n = 0.5 f +
0.5(1−1/n)(0.5p+0.5q)+(0.5/n)p, f̂ = 0.5 f +0.5(0.5p+0.5q), ĝ = 0.5g+0.5(0.5p+0.5q). Since
U( f̂ n(s)) = U( f̂ (s))+ (U(p)−U(q))/4n > U( f̂ n(s)) ∀s ∈ S, and WP (h) = 0.5WP (h)+0.25U(p)+
0.25U(q), then [ f ⪰P g ∀P ∈ A2] =⇒ [ f̂ ⪰P ĝ ∀P ∈ A2] =⇒ [ f̂ n ≻P ĝ ∀P ∈ A2] =⇒ [ f̂ n ≻P

ĝ ∀P ∈A1]. Since WP (·) is continuous, [ f̂ ⪰P ĝ ∀P ∈A1] and [ f ⪰P g ∀P ∈A1], proving (iv).

Let (iv) hold. Assume [ f ≻P g ∀P ∈ A2]. Note the function ζ : Π×H ×H given by ζ(P, f , g) =
WP ( f )−WP (g) is uniformly continuous on the compact setA2×H×H. Therefore, ∃ϵ> 0: WP ( f )>
WP (g)+ 2ϵ ∀P ∈ A2. Using f̂ , ĝ defined in the paragraph above, we get WP ( f̂ ) > WP ( ĝ)+ ϵ
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∀P ∈ A2. Let f̂γ = 0.5 f +0.5(1−γ)(0.5p+0.5q)+0.5γq, then for γ > 0 small enough, WP ( f̂ ) >
WP ( f̂γ)>WP ( f̂ )−ϵ/2>WP ( ĝ) ∀P ∈A2. By (iv) and the fact that U1( f̂ (s))>U1( f̂γ(s)) ∀s ∈ S, we
have WP ( f̂ )>WP ( f̂γ)≥WP ( ĝ) ∀P ∈A1. Therefore, WP ( f )>WP (g) ∀P ∈A1, proving (iv)=⇒ (v).

Since (iv)⇐⇒(v) ⇐⇒(iii)=⇒ (ii)=⇒ (i)=⇒ (iii), all statements of Lemma 13 are equivalent. □

The following lemma is closely related to lemmas 1-7 in Crès et al. (2011). The difference is that⪰P

does not satisfy EUA axiom from Crès et al. (2011) with respect to ⪰Pi , but only the Unanimity
axiom. We also borrowed some of the ideas of proofs from their lemmas 1-7. Let X = {x, y},
U(x)= 1, U(y)=−1, H = [−1,1]S ; denote by WP ( f )=minµ∈P

∑
s∈S fsµ(s) for f ∈RS .

Lemma 14. Let X = {x, y}, U(x) = 1, U(y) =−1, H = [−1,1]S ⊂RS , D = {P1, ...,PN } ⊂Π, P ∈Π,
and [WPi ( f ) ≥ WPi (g) ∀i = 1, ..., N] =⇒ WP ( f ) ≥ WP (g) for all f , g ∈ H. Denote by W( f ) =
(WP1( f ), ...,WPN ( f )), Q = W(H) ⊂RN , cone(Q) = {

t ∈RN ∣∣∃t̃ ∈Q and γ ≥ 0 : t = γt̃
}
and define

functions φ : cone(Q)→R and ψ :RN →R by

φ(t) = γWP ( f ) for some γ> 0, f ∈ H such that W( f )= γ−1t

ψ(t) = inf
{
φ(t′)

∣∣t′ ∈ cone(Q) and t′ ≥ t
}

where t′ ≥ t denotes t′i ≥ ti for i = 1, ..., N . Then:

(a.i) Functions φ and ψ are well-defined;

(a.ii) WP ( f )=ψ(W( f )) for all f ∈RS ;

(b.i) Function ψ is positively homogeneous: ψ(λt)=λψ(t) for all λ≥ 0;

(b.ii) Function ψ is monotone: t ≥ t′ =⇒ ψ(t)≥ψ(t′);

(b.iii) Function ψ is C-additive: ψ(t+β · (1, ...,1))=ψ(t)+ψ(β · (1, ...,1)) for all β ∈R;
(b.iv) Function ψ is normalized: ψ(1, ...,1)= 1.

Proof. Denote by e = (1, ...,1) ∈RN , ι= (1, ...,1) ∈RS .

Let t ∈ cone(Q) then ∃γ> 0, t̂ ∈Q, and f ∈ H such that t = γt̂ andW( f )= t̂ = γ−1t. Suppose g ∈ H,
δ > 0 are such that W(g) = δ−1t. WLOG, δ ≤ γ, hence (δ/γ)g ∈ H, and by positive homogeneity
of W, W((δ/γ)g)= γ−1t =W( f ). Since W( f )≥W((δ/γ)g) and W((δ/γ)g)≥W( f ) (according to the
partial order in RN ), then WP ( f )≥WP ((δ/γ)g) and WP ((δ/γ)g)≥WP ( f ); therefore, WP ((δ/γ)g)=
WP ( f ). Hence, φ(t) = δWP (g) = δ · (γ/δ)WP ( f ) = γWP ( f ). Therefore, the value of φ is the same
for arbitrary pairs γ > 0, f ∈ H and δ > 0, g ∈ H, proving that φ is well-defined. Since W(ι) = e,
W(−ι) = −e, then αe ∈ cone(Q) for all α ∈ R. Since (mini ti) · e ≤ t ≤ (maxi ti) · e, then ψ is
well-defined as well, proving (a.i).
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Claim 8. Function φ is positively homogeneous, monotone, C-additive and normalized.

Proof of Claim 8. Consider δ ∈ [0,1]; let f ∈ H, γ> 0 be such that W( f )= γ−1t for t ∈ cone(Q).
Then δ f ∈ H, and W(δ f ) = δW( f ) = γ−1δt, hence φ(δt) = γWP (δ f ) = γδWP ( f ) = δφ(t); this
suffices to show positive homogeneity of φ.

Let r, t ∈Q and r ≥ t. Then ∃ f , g ∈ H: W( f )= r,W(g)= t. Since r ≥ t, φ(r)= 1·WP ( f )≥ 1·WP (g)=
φ(t). Hence, φ is monotone onQ. Let r, t ∈ cone(Q). Since u ∈Q =⇒ βu ∈Q ∀β ∈ [0,1] (follows
from positive homogeneity of W(·) and H = [−1,1]S), then ∃δ> 0 such that δr,δt ∈Q. Since φ is
positively homogeneous, φ(r)= δ−1φ(δr)≥ δ−1φ(δt)=φ(t), hence φ is monotone on cone(Q).

Since W(ι)= e then φ(e)= 1 ·WP (ι)= 1, hence φ is normalized.

Let t, t+βe ∈ cone(Q), where β ∈R. Then ∃γ> 0, f ∈ H: W( f )= γt. For small enough δ> 0, δ f +
δγ−1βι ∈ H, then W(δ f +δγ−1βι)= δW( f )+δγ−1βe = γ−1(δt+δβe) and φ(δt+δβe)= γWP (δ f +
δγ−1βι)= δγWP ( f )+δβ= δ(φ(t)+β)= δ(φ(t)+φ(βe)). Since φ is positively homogeneous, φ(t+
βe)=φ(t)+φ(βe), hence φ is C-additive, proving Claim 8. □
Let γ > 0, t ∈ RS . Using Claim 8, ψ(γt) = inf

{
φ(t′)

∣∣t′ ∈ cone(Q) and t′ ≥ γt
} = inf

{
φ(t′)

∣∣t′ ∈
cone(Q) and γ−1t′ ≥ t

} = inf
{
φ(t′)

∣∣γ−1t′ ∈ cone(Q) and γ−1t′ ≥ t
} = inf

{
φ(γt′′)

∣∣t′′ ∈ cone(Q)

and t′′ ≥ t
} = inf

{
γφ(t′′)

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
} = γ · inf

{
φ(t′′)

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
} =

γψ(t). Thus, ψ is positive homogeneous, proving (b.i).

Let t′ ≥ t, then
{
t′′ ∈ cone(Q)

∣∣t′′ ≥ t′
}⊆ {

t′′ ∈ cone(Q)
∣∣t′′ ≥ t

}
, hence ψ(t′)≥ψ(t), proving (b.ii).

Claim 9. For all t ∈ cone(Q), ψ(t)=φ(t).

Proof of Claim 9. [t′ ≥ t =⇒ φ(t′)≥φ(t)] =⇒ ψ(t)≥φ(t); t ∈ cone(Q) =⇒ ψ(t)≤φ(t). □
Using Claims 8,9, ψ(e)=φ(e)= 1, proving (b.iv).

Claim 10. If t ∈ cone(Q), then t+βe ∈ cone(Q) for all β ∈R.
Proof of Claim 10. It is enough to consider β ̸= 0. Since t ∈ cone(Q), ∃γ> 0, f ∈ H: t = γW( f ).
For small enough δ> 0, δ f +δγ−1βι ∈ H, hence t+βe = δ−1γW(δ f +δγ−1βι) ∈ cone(Q). □
Using Claim 10, we getψ(t+βe)= inf

{
φ(t′)

∣∣t′ ∈ cone(Q) and t′ ≥ t+βe
}= inf

{
φ(t′)

∣∣t′ ∈ cone(Q)

and t′ − βe ≥ t
} = inf

{
φ(t′)

∣∣t′ − βe ∈ cone(Q) and t′ − βe ≥ t
} = inf

{
φ(t′′ + βe)

∣∣t′′ ∈ cone(Q)

and t′′ ≥ t
} = inf

{
φ(t′′)+β

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
} = inf

{
φ(t′′)

∣∣t′′ ∈ cone(Q) and t′′ ≥ t
}+β =

ψ(t)+β=ψ(t)+βψ(e)=ψ(t)+ψ(βe), proving (b.iii).

Let f ∈RS , then δ f ∈ H for some δ > 0. Using Claim 9 and (b.i), we get WP ( f ) = δ−1WP (δ f ) =
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δ−1φ(W(δ f ))= δ−1ψ(W(δ f ))= δ−1ψ(δW( f ))=ψ(W( f )), proving (a.ii). Lemma 14 is proven. □
We next use results from Chandrasekher et al. (2022).

Lemma 15. Let function ψ : RN →R be positively homogeneous, monotone, C-additive and nor-

malized, then there is a non-empty compact collection Θ of non-empty compact and convex sets of

weights Λ⊆△({1, ..., N}) such that for all t ∈RN

ψ(t) = max
Λ∈Θ

min
λ∈Λ

N∑
i=1

λi ti (9)

Proof. The statement of this Lemma is equation 19 in Appendix B1 on page 29 of Chandrasekher
et al. (2022). □
Lemma 16. If c(·) has a framed ambiguity representation with finite number of frames, then any

framed ambiguity representation of c(·) has a finite number of frames.

Proof. Follows from Theorem 1, since |A | <∞ =⇒ | (A )coh | ≤ 2|A | <∞. □
Lemma 17. If P is a convex union of C (eq. (4)), then P ∈Π and IP (z)= min

P ′∈C
IP ′(z) ∀z ∈RS .

Proof. Note that P is non-empty and convex. Let µn ∈ ⋃
P ′∈C

P ′ be such that µn −→ µ ∈Π. Then
∀n = 1,2, ... ∃Pn ∈ C : µn ∈ Pn. Since C is compact, ∃Pnk −→ P ′ ∈ C . Thus, ∃µ̂nk ∈ P ′ for
k = 1,2, ... such that |µ̂nk −µnk | −→ 0. Therefore, |µ̂nk −µ| ≤ |µ̂nk −µnk |+|µnk −µ|→ 0. Since P ′ is
closed, µ̂nk −→ µ ∈ P ′. Thus, the set P̃ = ⋃

P ′∈C
P ′ is closed. Therefore, its convex hull P is closed

(by Corollary 5.33 of Aliprantis and Border (2005)), and P ∈Π. Finally,
IP (z) = min

µ∈conv(P̃)

∑
s∈S

µ(s)zs = min
µ∈P̃

∑
s∈S

µ(s)zs = min
P ′∈C

min
µ∈P ′

∑
s∈S

µ(s)zs = min
P ′∈C

IP ′(z) □

Lemma 18. Let C = {P1, ...,PN }⊆Π, λ ∈△({1, ..., N}). Then:

(i) If P is a convex combination ofC with respect to λ (eq. (5)), then P ∈Π and IP (z)=∑N
i=1λi IPi (z);

(ii) Function ζ : △({1, ..., N})→Π given by ζ(λ)=∑N
i=1λiPi is continuous.

Proof. Note that P is non-empty. Let µn ∈ P for n = 1,2, ..., and µn −→ µ. Then ∃µn
i : µn

i ∈ Pi

∀n = 1,2, ... ∀i = 1, ..., N and µn =∑N
i=1λiµ

n
i ∀n = 1,2, .... Since N <∞, ∃µnk , µi ∈ Pi, i = 1, ..., N:

µ
nk
i −→ µi ∀i = 1, ..., N . Then µ = lim

k→∞
µnk = lim

k→∞
∑N

i=1λiµ
nk
i = ∑N

i=1λiµi, hence µ ∈ P , and

P is closed. If µ,µ′ ∈ P , then there are µi,µ′
i ∈ Pi for i = 1, ..., N such that µ = ∑N

i=1λiµi and
µ′ =∑N

i=1λiµ
′
i. Since each Pi is convex, ρµi+(1−ρ)µ′

i ∈ Pi for all ρ ∈ (0,1), hence ρµ+(1−ρ)µ′ =
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∑N
i=1λi(ρµi + (1−ρ)µ′

i), and P is convex. Finally, to prove statement (i),

IP (z)=min
µ∈P

∑
s∈S

µ(s)zs = min
µi∈Pi ∀i=1,...,N

∑
s∈S

N∑
i=1

λiµi(s)zs =
N∑

i=1
λi

(
min
µi∈Pi

∑
s∈S

µi(s)zs

)
=

N∑
i=1

λi IPi (z)

Let µ ∈ ∑N
i=1λiPi, then ∃µi ∈ Pi: µ = ∑N

i=1λiµi. Consider µ′ = ∑N
i=1λ

′
iµi ∈ ∑N

i=1λ
′
iPi. Then

µ−µ′ =∑N
i=1(λi−λ′

i)µi −→ 0when λ′ −→λ. Similarly,∀µ′ ∈∑N
i=1λ

′
iPi ∃µ ∈∑N

i=1λiPi: µ′−µ−→ 0

when λ′ −→λ. Therefore, λ′ −→λ implies ∑N
i=1λ

′
iPi −→∑N

i=1λiPi, proving (ii). □
The next lemma mirrors Proposition 1 in Crès et al. (2011):

Lemma 19. Let Λ⊆△(1, ..., N) be a non-empty closed and convex set of weights, then

WP (z) = min
λ∈Λ

N∑
i=1

λiWPi (z) ∀z ∈RS iff P =
{
µ ∈△S

∣∣∣ ∃λ ∈Λ and µi ∈ Pi : µ=
N∑

i=1
λiµi

}
(10)

Proof. Let P =
{
µ ∈ △S

∣∣∣ ∃λ ∈ Λ and µi ∈ Pi : µ = ∑N
i=1λiµi

}
. For an arbitrary z ∈ RS let

µ∗
i ∈ arg min

µ∈Pi

(µ ·z) ̸=∅ and λ∗ = arg min
λ∈Λ

∑N
i=1λiWPi (z) ̸=∅; the latter minimum exists because

by Lemma 18 (ii), the convex combination of sets of beliefs is continuous in weights λ, and Λ is
compact. Then µ∗ =∑N

i=1λ
∗
i µ

∗
i ∈ P , and WP (z)≤µ∗ ·z=∑N

i=1λ
∗
i µ

∗
i ·z=min

λ∈Λ
∑N

i=1λiWPi (z).

Conversely, let µ∗∗ ∈ arg min
µ∈P

µ ·z. Then ∃λ∗∗ ∈Λ, µ∗∗
i ∈ Pi: µ = ∑N

i=1λ
∗∗µ∗

i , and WP (z) = µ∗∗ ·

z = ∑N
i=1λ

∗∗
i µ∗∗

i ·z ≥ ∑N
i=1λ

∗∗
i WPi (z) ≥min

λ∈Λ
∑N

i=1λiWPi (z). Hence, WP (z) = min
λ∈Λ

∑N
i=1λiWPi (z),

proving the “if” direction of the Lemma. The “only if” direction follows from Lemma 8. □
Lemma 20. (i) For any non-empty collection of sets of beliefs A ⊆Π its closure Γ(A ) with respect

to operations of convex union, coherent intersection and convex combination given by Definition 8

exists and unique; (ii) for any any non-empty collection of sets of beliefs A ,B: (ii.a) A ⊆ B =⇒
Γ(A )⊆Γ(B); (ii.b) Γ(Γ(A ))=Γ(A ).

Proof. Let F be the set of collections of sets of beliefs F that satisfy condition (i) and (ii) of the
Definition 8. Note that Π ∈ F ̸=∅. Then there exists Γ(A ) = ∩

F∈F
F and it is unique, proving (i).

Next, ifA ⊆B, then Γ(B) is closed under the three considered operations, and it containsA ⊆B,
hence Γ(A ) ⊆ Γ(B), proving (ii.a). Since Γ(A ) is closed under the three considered operations
and it contains itself, then Γ(Γ(A ))=Γ(A ), proving (ii.b). □
Lemma 21. Let vNM expected utility function U(·) be fixed, and ∅ ̸= D ⊆ Π. If P ∈ Γ(D), then

[ f ≻P ′ g ∀P ′ ∈D
]
implies f ≻P g.

Proof. Let E ⊆ Γ(D) be the collection of all sets of beliefs P ∈ Γ(D) such that
[
f ≻P ′ g ∀P ′ ∈D

]
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implies f ≻P g. Note that ∅ ̸= D ⊆ E . Let f and g be such that f ≻P ′ g ∀P ′ ∈ D. Take arbitrary
closed sub-collection C ⊆ E . If it intersects coherently, and its intersection is P , by Lemma 11,
WP ( f ) = maxQ∈C WQ( f ) ≥ WQ∗( f ) > WQ∗(g) = maxQ∈C WQ(g) = WP (g), where Q∗ maximizes
WQ(g) over C ⊆ E (exists since C is compact), and WQ∗( f ) > WQ∗(g) by the definition of E ;
hence, f ≻P g and P ∈ E .

If P is a convex union of C , then by Lemma 17, WP ( f ) = minQ∈C WQ( f ) =WQ∗∗( f ) >WQ∗∗(g) ≥
minQ∈C WQ(g) = WP (g), where Q∗∗ minimizes WQ( f ) over C ⊆ E ; hence, f ≻P g and P ∈ E .
Finally, ifC = {Q1, ...,QN } is finite, and P is a convex combination of frames inC with weights λ,
then by Lemma 18, WP ( f ) = ∑N

i=1λiWQ i ( f ) > ∑N
i=1λiWQ i (g) = WP (g), where we used WQ i ( f ) >

WQ i (g) since Q i ∈ C ⊆ E . Again, f ≻ g and P ∈ E . Therefore, Γ(E ) = E , and Γ(D) ⊆ Γ(E ) ⊆
Γ(Γ(D))=Γ(D), which implies E =Γ(D), proving the Lemma. □
Wenowprove the statements of the Theorem. Suppose first that DM1 ismore consistent thanDM
2. By Lemma 13 ((i)=⇒ (iv)),U1 is a positive affine transformation ofU2, and [ f ⪰P g ∀P ∈A2] =⇒
[ f ⪰P g ∀P ∈A1]. By Lemma 5, it isWLOG to consider X = {x, y}. NormalizeU(x)= 1,U(y)=−1,
and consider P ∈A1, then by Lemma 14, WP ( f )=ψ(W( f )) for all f , where ψ is positively homo-
geneous, monotone, C-additive and normalized. Therefore, by Lemma 15, there is a non-empty
compact collection Θ of non-empty compact and convex sets of weights Λ ⊆△({1, ..., N}) such

that for all t ∈RN , ψ(t)=max
Λ∈Θ

min
λ∈Λ

N∑
i=1

λi ti. Hence, for all f ∈RS ,

WP ( f ) = max
Λ∈Θ

(
min
λ∈Λ

( N∑
i=1

λiWPi ( f )
))

= max
Λ∈Θ

WPΛ( f )

where PΛ =
{
µ ∈ △S

∣∣∣ ∃λ ∈Λ and µi ∈ Pi : µ = ∑N
i=1λiµi

}
and we used Lemma 19. Therefore,

by Lemma 11, Θ is compact, and P is a coherent intersection of the collection of sets of beliefs
{PΛ}Λ∈Θ. By Lemmas 17, 18, each PΛ is a convex union of the family {Pλ}λ∈Λ, and each Pλ is a
convex combination of Pi with weights λ. Hence, statement (i) of the Theorem implies (iii).

The implication (iii) =⇒ (ii) is straightforward: each of the three operations results in a set of
beliefs in Γ(A2) by the definition of Γ(·). Finally, assume statement (ii) holds. By Lemma 21,
[ f ≻P ′ g ∀P ′ ∈D

]
implies f ≻P g for all P ∈ A1 ⊆ Γ(A2). Therefore, by Lemma 13 ((v) =⇒ (i)),

DM 1 is more consistent than DM 2. Thus, (i)=⇒ (iii)=⇒ (ii)=⇒ (i), proving the Theorem. ■

Proof of Proposition 5

Proposition 5 is proven in Lemma 13 ((i)⇐⇒(iii)). ■
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Proof of Corollary 2

Suppose ⪰1=⪰2; that is, c1({ f , g})= c2({ f , g}) for all f , g ∈ H. By Lemma 13 ((iii)=⇒ (i)), DM 1 is
more consistent than DM 2, and vice versa, DM 2 is more consistent than DM 1. By Theorem 2,
U2 is a positive affine transformation of U1, A1 ⊆Γ(A2), A2 ⊆Γ(A1), hence Γ(A2)=Γ(A1).

Suppose U2 is a positive affine transformation of U1 and Γ(A2)= Γ(A1). By Theorem 2, DM 1 is
more consistent than DM 2, and vice versa, DM 2 is more consistent than DM 1. By Lemma 13
((i)=⇒ (iii)), c1({ f , g})= c2({ f , g}) for all f , g ∈ H, hence ≻1=⪰2. ■

Proof of Corollary 3

Consider DM 2 whose choices are represented by the framed ambiguity model (U , {Pi}i=1,...,N),
where U(·) is a common vNM expected utility function, and DM 1 with choice correspondence
c1(·) represented by (U , {P}). These models are well-defined, sinceU(·) is non-degenerate because
of non-degeneracy of ⪰i, ⪰, and families of frames are finite and, hence, closed. Therefore, by
Lemma 13 ((i)⇐⇒(iv)), ⪰ satisfies Unanimity with respect to (U , {Pi}i=1,...,N) if and only if DM 1
is more consistent than DM 2, which is equivalent to {P}⊆Γ({P1, ...,PN }) by Theorem 2. ■

Preliminary result for the proof of Proposition 6

To prove Proposition 6, let us another result which is worth considering on its own.

Consider an agent who contemplates her potential decisions under the various decision frames.
Let she face, for example, a choice between an act f =σ f1+(1−σ) f2 and a constant act x (money).
She figures that under frame 1, she would prefer f1 to x to f2, while under frame 2, f2 to x to f1.
Thinking optimistically, she picks frame 1 to evaluate f1, frame 2 to evaluate f2 and concludes
that act f is better than x.

Our next proposition bounds the beliefs of the rational ambiguity-averse agent (DM 1) who ap-
plies such “optimistic” arguments either to experts’ suggestions—with the interpretation that each
frame is an expert’s advice—or to her potential frame-susceptible choice behavior (DM-2). For
brevity, we omit the universal qualifiers ∀{ f i}⊂ H,∀p ∈ H0 in statement (i) below.

Proposition 7. Let c2(·) be represented by the framed ambiguity model (U ,A ), and ⪰1 be repre-

sented by the Gilboa and Schmeidler (1989) maxmin model with vNM expected utility V and set of

beliefs P . Then the following statements are equivalent:
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(i) If f i ∈ c2({ f i, p}) for all i = 1, ..,k, then
∑k

i σi f i ⪰1 p for all convex weights σ.

(ii) V is a positive affine transformation of U , and P ⊆ ⋂
Q∈A

Q ̸=∅.

Proposition 7 says that an ambiguity-averse decision maker who contemplates a set of frames A

and finds “arguments” f i ∈ c2({ f i, p}) to evaluate a mixture ∑k
i σi f i to be at least as good as act p

should consider only priors that lie in the intersection of all frames in A—but not necessary all
these priors. If the intersection of frames in A is empty, this behavior becomes inconsistent with
minimization of expected utility over a set of priors—the agent becomes too optimistic.

Proof of Proposition 7. Suppose (ii) holds, thenwithout loss,U1 =U2. Suppose f i ∈ c2({ f i, p})∀i =
1, ...,k, then

WP

( k∑
i=1

σi f i

)
≥

k∑
i=1

σiWP ( f i) ≥
k∑

i=1
σi ·max

Q∈A2
WQ( f i) ≥

k∑
i=1

σi ·U(p) = U(p)

where we used the concavity of the maxmin expected utility, and the fact that max
Q∈A2

WQ( f i) ≤
µ ·U( f (i)) for all µ ∈ P ⊆ ⋂

Q∈A2

Q. Hence, ∑k
i=1σi f i ∈ c1

({∑k
i=1σi f i, p

})
, proving (i).

Lemma 22. If statement (i) of Proposition 7 holds, thenU1 is a positive affine transformation ofU2.

Proof. Note that U2(p) ≥U2(q) ⇐⇒ p ∈ c2({p, q}) =⇒ p ∈ c1({p, q}) =⇒ U1(p) ≥U1(q). Since
U1 is non-degenerate, ∃x, y ∈ X : U1(x) > U1(y); this implies U2(x) > U2(y). Normalize both U1

andU2 such thatU1(x)=U2(x)= 1,U1(y)=U2(y)= 0. IfU2(p)=λ−1 > 1, thenU2(λp+(1−λ)y)=
U2(x) = 1 =⇒ U1(λp+ (1−λ)y) = U2(x) = 1. Hence, U1(p) = λ−1 = U2(p). Similar analysis for
U2(p) ∈ [0,1] and U2(p)< 0 shows that U1(p)=U2(p) for all p ∈△X . □
Lemma 23. IfA is a non-empty compact family of non-empty compact sets of beliefs, then

⋂
Q∈A

Q ̸=
∅ if and only if

⋂
Q∈C

Q ̸=∅ ∀C ⊆A : 1≤ |C | <∞.

Proof. Since △S has the Heine-Borel property, if A has a finite intersection property, then⋂
Q∈A

Q ̸=∅. The other direction is trivial. The Online Appendix provides a direct proof. □

Let statement (i) of Proposition 7 holds; by Lemma 22, WLOG,U1 =U2. Towards a contradiction,
assume ∃µ ∈

(
P1\

⋂
Q∈A2

Q
)
̸=∅. Since A = A2 ∪ {{µ}} is compact, and {µ}∩

( ⋂
Q∈A2

Q
)
=∅, then by

Lemma 23, there is a finite sub-family {K1, ...,KN }⊂A such that
N⋂

i=1
K i =∅; we may assume that

K1 = {µ}, and K2, ...,KN ∈A2 without loss. We next use a proposition from Samet (1998):
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Lemma 24. Let K1, ...,KN ∈ Π, then
N⋂

i=1
K i =∅ if and only if ∃z1, ..., zN ∈RS :

∑N
i=1 zi = 0, and

zi ·µi > 0 ∀µi ∈ K i∀i = 1, ..., N .

Proof. See Samet (1998) □
By Lemma 24, ∃z1, ..., zN ∈RS : −z1 =∑N

i=2 zi, −z1·µ< 0, andminν∈K i (ν·zi)≥ 0 for all i = 2, ..., N .
Dividing all zi by the same positive number does not change the conclusion, hence |zi| ≤ 0.1

without loss. WLOG, U1(x) = U2(x) = 1, U1(y) = U2(y) = 0 for some x, y ∈ X . Consider acts f i,
i = 2, ..., N given by f i(s) = (

0.5+ (zi)s
)
x+ (

0.5− (zi)s
)
y, and note that the act g =∑N

i=2
1

N−1 f i is
given by g(s)= (

0.5−(z1)s/(N−1)
)
x+(

0.5+(z1)s/(N−1)
)
y. Therefore, WK i ( f i)≥ 0.5=U2(0.5x+

0.5y) for all i = 2, ..., N , and WP (g) ≤ 0.5+ (−z1 ·µ)/(N −1) < 0.5 = U1(0.5x+0.5y). It follows
f i ∈ c2({ f i,0.5x+0.5y}) for all i = 2, ..., N , but g ̸∈ c1({g,0.5x+0.5y}). This contradiction proves
the implication (i)=⇒ (ii). ■

Proof of Proposition 6

Lemma 25. Let Condition 1 or 2 hold. Then

I ⋂
i=1,...,N

Pi (z) = sup
{ N∑

i=1
IPi (zi)

∣∣∣ N∑
i=1

zi = z
}

(11)

where IP (z)=minµ∈P (µ ·z), and for each z ∈RS , the suprenum is attained34.

Proof. If Condition 2 holds, the statement follows from Corollary 16.4.1 in Rockafellar (1970). If
Condition 1 holds, the statement follows fromTheorem 20.1 in Rockafellar (1970) for the indicator
functions f i(·)= δ(·|Pi), where f i(·) are polyhedral because Pi are polyhedral (Corollary 19.2.1 in
Rockafellar (1970)). □

Denote by {Q1, ...,QN } = A and P =
N⋂

i=1
Q i. Normalize the expected utility such that U(x) = 1,

U(y) = 0 for some x, y ∈ X , and let q = 0.5x+0.5y. By Lemma 25, ∃z1, ..., zN ∈ RS such that∑N
i=1(zi)s = U( f (s)) for s ∈ S, and WP ( f ) = IP (U( f )) = ∑N

i=1 IPi (zi). Next, let λ ∈ (0,1], and
consider, for i = 1, ..., N , the following acts f i that are well-defined for sufficiently small λ:

f i(s)=λ f (s)+
[
(1−λ)0.5−λU( f (s))+λN(zi)s +λ

(
WP ( f )−N · IQ i (zi)

)]
x+

+
[
(1−λ)0.5+λU( f (s))−λN(zi)s −λ

(
WP ( f )−N · IQ i (zi)

)]
y

34We define the support functional IP (·) as the minimum of a linear function over P , while Rockafellar (1970) defines
it as a maximum. Hence, we get sup instead of his inf in lemma 25.
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By our choice of zi, we have
∑N

i=1σi f i =λ f +(1−λ)(0.5x+0.5y)=λ f +(1−λ)q, where σi = N−1.
Next, U( f i(s)) = (1−λ)0.5+λN(zi)s +λ

(
WP ( f )− N · IQ i (zi)

)
, hence IQ i (U( f i)) = (1−λ)0.5+

λWP ( f )=WP (λ f +(1−λ)q) for all i = 1, ..., N . Therefore, λ f +(1−λ)q ∈ c1({λ f +(1−λ)q, p}) =⇒
WP (λ f + (1−λ)q)≥U(p) =⇒ IQ i (U( f i))≥U(p) =⇒ f i ∈ c2({ f i, p}) for all i = 1, ..., N . From the
other hand, by Proposition 7, f i ∈ c2({ f i, p}) for all i = 1, ..., N implies λ f +(1−λ)q ∈ c1({λ f +(1−
λ)q, p}). Thus, we have proven that statement (ii) of Proposition 6 implies statement (i).

Lemma 26. If c1 satisfies statement (i) of Proposition 6, then it is unique and it is given by c1(A)=
{ f ∈ A| f ⪰ g ∀g ∈ A}, where f ⪰ g if and only if ∃p ∈ H0: f ∈ c1({ f , p}) and p ∈ c1({g, p}).

Claim 11. If c1 satisfies statement (i) of Proposition 6, then c1({r, p})= c2({r, p}) for all r, p ∈ H0

Proof of Claim 11. Consider a decomposition r = f1; then, r ∈ c2({r, p}) =⇒ r ∈ c1({r, p}). Next,
by Condition 1 or Condition 2, ∃µ ∈ ⋂

Q∈A Q ̸=∅. Let λr+ (1−λ)q = ∑k
i=1σi f i be an arbitrary

decomposition with λ ∈ (0,1]. Then
k∑

i=1
σi max

Q∈A
WQ( f i)≤

k∑
i=1

σi
∑
s∈S

µsU( f i(s))= ∑
s∈S

µsU
( k∑

i=1
σi f i(s)

)=λU(r)+ (1−λ)U(q)

If r ∈ c1({r, p}), then for some decomposition, maxQ∈A WQ( f i) ≥ λU(p)+ (1−λ)U(q), i = 1, ...,k,
It follows that U(r)≥U(p) and r ∈ c2({r, p}). □
Claim 12. Let c1 satisfies statement (i) of Proposition 6, then there is p f ∈ H0 such that [p ∈
c1({ f , p}) if and only if U(p)≥U(p f )], and [ f ∈ c1({ f , p}) if and only if U(p)≤U(p f )].

Proof of Claim 12. Let p, p ∈△X be such that U(p)=mins∈S U( f (s)), U(p)=mins∈S U( f (s));
one can take p = f (s′), p = f (s′′) for s′, s′′ chosen accordingly. If U(p) = U(p), we are done by
Claim 11, so, consider U(p) < U(p). Consider a decomposition f = f1, then f ∈ c2({ f , p}), and
hence, f ∈ c1({ f , p}). Next, consider f n = (1−1/n) f +(1/n)p, and let λ f n+(1−λ)q =∑k

i=1σi f i be
an arbitrary decomposition. Let µ ∈⋂

Q∈A Q ̸=∅. Assume f i ∈ c2({ f i,λp+(1−λ)q}) for i = 1, ...,k.
Then λU(p)+ (1−λ)U(q)≤∑

s∈SµsU( f i(s)) for i = 1, ...,k, but∑
s∈S

µsU( f i(s))=
k∑

i=1
σi

∑
s∈S

µsU( f i(s))= ∑
s∈S

µsU(λ f n+(1−λ)q)≤λ
n−1

n
U(p)+λ

n
U(p)+(1−λ)U(q)

which implies U(p) ≤ U(p) in contradiction. Hence, f n ̸∈ c1({ f n, p}), and p ∈ c1({ f n, p}). By
continuity of c1, p ∈ c1({ f , p}). Therefore, by continuity of c1, ∃p f = ζp+ (1−ζ)p with ζ ∈ [0,1]

such that c1({ f , p f })= { f , p f }. Since c1 satisfies WARP, the statement of the Claim follows. □
Proof of Lemma 26. By Claims 11, 12, andWARP, there is a utility function W : H →R given by
W( f )=U(p f ) such that f ∈ c({ f , g}) if and only if W( f )≥W(g). ByWARP, c1(A)= { f ∈ A|W( f )≥
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W(g)∀g ∈ A}. Since W is identified via c1 on menus { f , p}, f ∈ H, p ∈ H0, the Lemma follows. □
Let ĉ be the choice correspondence induced by the Gilboa and Schmeidler (1989) maxmin model
with vNM expected utility function U and set of priors ⋂

Q∈A Q, then ĉ satisfies statement (i) of
Proposition 6 and coincides with c1 on menus { f , p}, f ∈ H, p ∈ H0. By Lemma 26, ĉ coincides
with c1 for all menus, proving that statement (i) of Proposition 6 implies statement (ii). ■

Proofs of other statements

Lemma 27. There is a choice correspondence c(·) that satisfies axioms 1-6 and violates Axiom 7 (C-

Non-Degeneracy) such that c(A) ̸= A for some A ∈K ; moreover, c({ f , g}) ̸= { f , g} for some f , g ∈ H

and c(A)= A for all A ∈K0.

Proof. Consider c(A) = {
f ∈ A

∣∣ f (1)(x) ≥ f (2)(x) or f (2)(x) ≥ g(2)(x) ∀g ∈ A
}
. Clearly, ∅ ̸=

c(A) ⊆ A. Consider f , g ∈ H with f (1)(x) = 0, f (2)(x) = 0.5, g(1)(x) = 0, g(2)(x) = 1. Then
c({ f , g}) = {g}. Since f (1)(x) = f (2)(x) for all f ∈ H0, then c(A) = A for all A ∈ K0, and C-Non-

Degeneracy is violated. The proof that other axioms are satisfied is omitted. ■
Lemma 28. If Pθ = ⋂

iθ∈Iθ
Piθ is a coherent intersection for all θ ∈ Θ, and P = ⋂

θ∈Θ
Pθ is a coherent

intersection, then P = ⋂
j∈{Iθ}θ∈Θ

Piθ is a coherent intersection as well.

Proof. Using Lemma 11 repeatedly, IP =maxθ∈Θmaxiθ∈Iθ IPiθ
=max j∈{Iθ}θ∈Θ IP j . ■

Lemma 29. Consider example given on pages 17-18. The intersection P3 = P5 ∩P6 is coherent.

Proof. Note that {µ1,µ3,µ4} is the set of extreme points of P5, and similarly, P6 = conv({µ2,µ3,µ4}),
P3 = conv({µ3,µ4}). Since 0.5µ1+0.5µ2 = (0.2,0.2,0.6)= 0.5µ3+0.5µ4, ∀ f ∈ H, it is not possible
that 3∑

s=1
µ1(s) f (s)(x),

3∑
s=1

µ2(s) f (s)(x)<
3∑

s=1
µ3(s) f (s)(x),

3∑
s=1

µ4(s) f (s)(x)

Hence, for all f ∈ H,

{µ3,µ4}∩
(
arg min

i∈{1,3,4}

3∑
s=1

µi(s) f (s)(x)∪arg min
i∈{2,3,4}

3∑
s=1

µi(s) f (s)(x)
)
̸=∅

It follows that WP3( f ) = mini∈{3,4}
∑3

s=1µi(s) f (s)(x) ≤ max{WP5( f ),WP6( f )}. Since P3 = P5 ∩P6,
WP3( f )≥max{WP5( f ),WP6( f )}, hence WP3( f )=max{WP5( f ),WP6( f )} for all f , and by Lemma 11,
P3 is a coherent intersection of P5 and P6. ■
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