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Abstract

An expected utility maximizer learns various aspects of her preferences in different decision frames; each

frame is defined as a collection of observable features of the choice environment. We interpret each feature

as a Blackwell experiment (signal structure) associated with a state space that describes uncertainty of the

agent’s preferences, and consider an agent who updates her beliefs using the Bayes rule. An analyst ob-

serves the resulting stochastic choice of a population of agents with heterogeneous state-dependent utility

functions. We show that almost any stochastic choice that admits a random utility representation within

each frame is consistent with such model. However, when the state space has limited cardinality, the re-

sulting stochastic choice should satisfy additional constraints on the sums of Block and Marschak (1960)

polynomials constructed from choice frequencies under each decision frame.
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1 Introduction

This paper interprets decision frames as emerging from different unobservable information struc-

tures that signal about the values of the alternatives in the decision problem faced by the agent.

The resulting distribution over posterior beliefs induces a stochastic choice that admits a random

utility representation within each frame. A question that we address is: is there a connection

between choice frequencies across various decision frames?

We motivate our analysis by two interpretation of this informational model of framing effects.

The first interpretation is that the relevant state space encodes uncertainty regarding the intrinsic

preference of the decision maker. Imagine a person who does not know precisely some aspect of

her true preferences, such as the extent of her fear of height. She contemplates between spend-

ing a weekend at the seashore or going to a mountain trip. Her decision might then depend on

a seemingly irrelevant detail: whether the day before, the featured Wikipedia article has been

“Parachuting” or not. In the first case, being a Wikipedia fan, the agent reads about parachuting.

Although the article does not provide any objective information regarding the benefits or costs

of going to a particular seashore or mountain trip, reading about parachuting triggers the agent

to think more about her own attitude toward great heights. As a result, the distribution of be-

liefs regarding the extend of fear or love of heights in the population of agents would be different

depending on whether such learning of own preferences has been triggered or not, resulting in

different frequencies of vacation choices.

The second interpretation is that the relevant state space encodes some objective unobservable

properties of the choice problem that matter for the decision making. For instance, suppose a

salesman can be either honest or dishonest; the true value of the items offered by the salesman

depends on his type. A buyer acquires information about the type of the salesman by observing

fine details of his facial expression during a conversation. One decision frame in this example

corresponds to buyer wearing her glasses, while the other—to buyer not wearing her glasses, and

hence, having lower ability to differentiate between salesman’s types.

The primitive of our model is an extended random choice that consists of choice frequencies

from different menus of items under various decision frames. Each frame is characterized by a

collection of observable features that we call frame details. Our model of Bayesian Agents with

Uncertain Preferences (BAUP) introduces a state space with a commonly known prior and signal
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structures associated with each frame detail; the agents in the population have heterogeneous

state-dependent utility functions. We say that a BAUP model represents an extended random

choice if the probability that the agent from the population receives a signal that suggest to choose

a certain item from the menu is equal to the corresponding observed frequency, and this holds for

all decision frames.

Our results show that whether there is a connection between choice frequencies across dif-

ferent frames depends on the cardinality of the state space. We first analyse the case when the

relevant state space could be arbitrary. Our first main result, Theorem 1, says that an extended

random choice could be approximated by a BAUP model—meaning that there exists a model

that induces the choice probabilities arbitrary close to the original extended random choice—if

and only if the random choice within each frame admits a random utility representation. Thus, a

BAUP model places almost no restrictions on choice frequencies observed under different decision

frames. One corollary of this result is that the analyst cannot infer the relative informativeness of

the decision frames from the observed extended random choice. Another application is to the dy-

namic random choice, where Theorem 1 replicates the “almost everything goes” result that could

be inferred from the analysis made in Frick, Iijima, and Strzalecki (2019).

We next analyse the case when the relevant state space is fixed. As an example, consider a

stylized experiment where a population of agents chooses from menus of alternatives that pro-

vide different consequences depending on the random binary state s ∈ {1,2}. There are three

alternatives: x,y, and z. Item x = (x1,x2) provides consequence x1 in the first state of the world

and x2 in the second state, and similarly do items y = (y1, y2) and z = (z1, z2). There are 3 treat-

ments in the experiment that differ in terms of information about the state revealed to the agents.

An analyst observes choice frequencies of a population of agents from different subsets of items

x,y,z. For each agent, first, Nature draws a state of the world s ∈ {1,2}, and then reveals a random

signal informative about the state according to the treatment’s signal structure, after which the

agent makes a choice.

Let ρAi (a) be the frequency with which item a is chosen from menu A under treatment i, and

suppose ρ{x,y}1 (x) = 0.8, ρ{x,y,z}1 (x) = 0.1, ρ{y,z}2 (y) = 0.7, and ρ
{x,y,z}
2 (y) = 0. Therefore, under treat-

ment i = 1, the resulting random choice admits a random utility representation that places prob-

ability ρ{x,y}1 (x)− ρ{x,y,z}1 (x) = 0.7 that the agent prefers z to x to y (we write it as z � x � y). Under
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treatment i = 2, a random utility representation should place probability ρ{y,z}2 (y)−ρ{x,y,z}2 (y) = 0.7

that the agent’s preference is x � y � z. Thus, at least some agents in the population exhibit pref-

erence reversal—placing item z to the top or to the bottom of the preference order depending on

the treatment.

The stochastic choice behavior in this example can be consistent with expected utility maxi-

mization and Bayesian updating. For instance, suppose that utility values of items in states 1 and

2 are x = (−1,9), y = (0,0), and z = (5,−15). In this case, depending on the belief p = P r(s = 2),

the preference is: z � y � x if p < 0.1, z � x � y if p ∈ (0.1,0.2), x � z � y if p ∈ (0.2,0.25), and

x � y � z if p > 0.25. Let the prior be π = 0.233, and treatments 1 and 2 induce distributions over

posteriors P1 = 0.2δ0 + 0.7δ0.19 + 0.1δ1 and P2 = 0.1δ0 + 0.2δ0.22 + 0.7δ0.27. The resulting random

utility model under treatment 1 places probability 0.2 on z � y � x, 0.7 on z � x � y, and 0.1 on

x � y � z. Similarly, the resulting random utility model under treatment 2 places probability 0.1

on z � y � x, 0.2 on x � z � y, and 0.7 on x � y � z, consistent with the observed choice frequencies.

In fact, if we are concerned only with choice frequencies under treatments 1 and 2, almost

any data could be explained by such informational model. However, our results show that, if the

observed choice frequencies under the first two treatments are as in our example, and the agents

in the population are expected utility maximizers, it must be the case that under treatment 3,

ρ
{x,z}
3 (z) − ρ{x,y,z}3 (z) ≤ 0.6. This restriction holds for a population of heterogeneous agents as well,

and it does not depend even on the assumption of Bayesian updating. For this result, it is sufficient

to know that the agents are expected utility maximizers, and the relevant state space is binary.

We provide two type of explicit constraints specific for the binary state space in Proposition 2.

For instance, the constraint mentioned in the example above is given by

ρ
{y,z}
2 (y)− ρ{x,y,z}2 (y) + ρ{x,z}3 (z)− ρ{x,y,z}3 (z) + ρ{x,y}1 (x)− ρ{x,y,z}1 (x) ≤ 2

Our next main results, Theorems 2 and 3, generalize Proposition 2 and formulate a way to

calculate a set of constraints necessary for a BAUP representation with a given state space S. The-

orem 2 does it indirectly, requiring the existence of a family of random utility representations

coherent in a certain way across frames. Theorem 3, in contrast, formulates a set of explicit con-

straints. It requires to calculate, from the frequencies of choices within each frame, specific Block

and Marschak (1960) polynomials, and restricts the values of certain sums of these polynomials.

In Corollary 3, we show that for any fixed state space, if the set of alternatives and the set of frames
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are rich enough, these additional constraints do have a bite: there is an extended random choice

that admits random utility representations within each frame, but fails to be approximated by a

BAUP model with the given state space.

The rest of the paper is organized as follows. In the remaining part of the Introduction, we

discuss the relevant literature. In Section 2, we develop a BAUP model and provide results for

an unrestricted state space. In Section 3, we analyze a BAUP model with a fixed state space. All

proofs are given in the Appendix.

1.1 Related Literature

This paper contributes to the literature on random utility models, random choice with unobserv-

able information, and to the literature on framing effects.

A random utility model has been considered in Block and Marschak (1960) where the authors

have introduced necessary conditions in terms of linear inequalities on the choice frequencies that

later has been called the Block-Marschak polynomials. In Falmagne (1978), it has been proven that

these conditions are also sufficient; this result has been then discussed in Economics literature in

Barberá and Pattanaik (1986). In our model, the random choice frequencies are consistent with the

random utility model within each frame, and the Block-Marschak polynomials play an important

role in our analysis when the state space has fixed cardinality.

Tversky and Kahneman (1981) introduced a notion of framing that serves as a benchmark

that enables the agents to identify some outcomes as gains and others as losses. In our paper,

the framing triggers a specific learning process and is associated with some unobservable signal

structure. Framing effects has been studied in a great number of papers, for instance in Huber,

Payne, and Puto (1982), Tversky and Simonson (1993), and Salant and Rubinstein (2008); our

notion of the extended random choice could be viewed as a stochastic counterpart of the Salant and

Rubinstein (2008)’s “extended choice”. The latter consists of deterministic choices from menus

under various decision frames. Menu-dependent stochastic choice is considered in Manzini and

Mariotti (2014).

Preference uncertainty has been discussed in Kreps (1979) and Dekel, Lipman, and Rustichini

(2001) in the context of choice over menus and preference for flexibility; in Karni and Safra (2016)

in the setup of “mental acts”. In Ahn and Sarver (2013), the authors connect the model of Dekel
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et al. (2001) and the random expected utility of Gul and Pesendorfer (2006) to identify proba-

bilities over subjective state space and utilities. In Dillenberger, Lleras, Sadowski, and Takeoka

(2014), the authors show how the analyst can recover the unobservable private information from

the preference relation on the set of menus of acts. In our model, the analyst has access to a much

less rich choice data.

In Frick et al. (2019), the authors consider a dynamic random choice in presence of unob-

servable private information, where the agents choose from lotteries of today’s consumption and

the continuation menu. The most close to our paper is their analysis of the model of “Bayesian

Evolving Beliefs” with restriction to “Atemporal consumption problems” with “Consumption in-

ertia and learning”.1 There are several differences between their and our setup: first, in their

model, the analyst observes correlations between choices in various periods, while in our model,

only marginal distributions within each frame are observable. However, the proof of our Theo-

rem 1, in fact, allows us to extend the theorem to the setup where the analyst observes the joint

distribution of choices under various decision frames as well.2 Second, in Frick et al. (2019), the

lotteries over consumption (and future menus) are considered, while in our model, we focus on

deterministic consumption.3 Third, our setup allows us to consider a more general assumptions

on how the agent’s private information is connected across the decision frames; an application to

a dynamic choice is a special case of our model. Finally, we analyse the implications of a known

size of the relevant state space, while in Frick et al. (2019), the authors do not constraint the state

space.

In Lu (2016), the author considers a stochastic choice from menus of Anscombe-Aumann acts

defined on the objective state space. He assumes that the choice results from an unobservable

private information and shows that the analyst can infer the agent’s private information from her

choices. In particular, the analyst can figure out if one agent is better informed than another.4 In

our model, the relevant state space is subjective, and the utilities of the alternatives depend on

1Sections 4.2 and 6.2 of Frick et al. (2019) correspondingly.
2We consider marginal probabilities in our model because it is a more natural primitive; in general, it is hard to

justify the observability of choices of the same agent under different decision frames if the set of these frames within

the model does not admit a linear Blackwell order.
3Thus, our model extends the random utility model of Falmagne (1978), while Frick et al. (2019) is extends the

random expected utility model of Gul and Pesendorfer (2006).
4In the sense of the Blackwell information order.
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the state. An application of our Theorem 1 shows that in our setup, in contrast to insights from

Lu (2016), the analyst almost always cannot make any inference about the informativeness of the

signals associated with the particular decision frame from the observed extended random choice.

In Natenzon (2019), the author considers a decision maker who learns her preferences when

she encounters a given choice problem. In his setup, signals are in the form of an additive Gaus-

sian noise associated with each of the “real” alternatives that can be potentially chosen and each

of the “phantom” alternatives in the menu that cannot be chosen. Equivalently, each “real menu”

consisting of the “real alternatives” can be encountered under one of the decision frames that cor-

respond to different sets of “phantom” alternatives (decoys). Our paper complements Natenzon

(2019)’s analysis by considering a general non-parametric setup and a more general set of frames

at the expense of having less sharp predictions.

Several papers study the role of unobserved information structures in explaining the realized

choices/deterministic preferences as oppose to the stochastic choice primitive, considered in our

model. In the setup considered in Shmaya and Yariv (2016), the authors show that the Bayesian

updating has a bite only when under all signal realizations, the agent chooses the same option;

the counterpart of this result in the probabilistic world would say that the Bayesian updating put

restriction only on the degenerate choice frequencies, which mirrors “almost everything goes” re-

sult in our Theorem 1. In Piermont (2017), the author studies a family of preference relations on

the set of Anscombe-Aumann acts indexed by a “menu”; the “menu” serves as the set of poten-

tial consequences of the considered acts. He assumes that the agent has state-dependent utility

function and that each menu is associated with an unobservable signal realization. Thus, in his

model, the state of the world may have arbitrary correlation with the menu, which yields a version

of “everything goes” result. In our model, in contrast, for any menu, the probability of the state of

the world and the signal structures associated with each decision frame remain the same; thus, the

decision frames are completely disentangled from the menus. Finally, a contemporary study Deb

and Renou (2021) characterises, under various assumptions on the signal structures and state-

dependent utilities, the set of possible realizations of the sequences of choices of a population of

agents who receive the same unobservable signals regarding the state of the world.
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2 Model

2.1 Primitive

There is a finite non-empty universal set of alternatives, X. A menu is a non-empty subset of

X. Denote by X the set of all menus; thus, X = 2X\{∅}. A finite non-empty set D is a set of frame

details. We interpret a frame detail as an observable by the analyst feature of the environment that

may be present or absent in the particular choice problem—such as a certain article in Wikipedia

being featured or not. The set D, hence, is the set of all such features. We call a decision frame a

subset of frame details f ⊆ D and use letters f ,g, ... for a generic frame. We denote by F the set of

frames that the agent may face; thus, F ⊆ 2D , F , ∅.

A primitive of the model is a family of probability distributions {ρAf }A∈X ,f ∈F that, for each

menu A ∈ X and each frame f ∈ F, gives the probability ρAf (a) that the agent chooses alternative

a ∈ A from menu A under the decision frame f . Thus, supp(ρAf ) ≡ {x ∈ X |ρAf (x) > 0} ⊆ A. We call ρ

an extended random choice.

2.2 Bayesian Agents with Uncertain Preferences

A model of Bayesian Agents with Uncertain Preferences (BAUP) consists of a tuple (S,π,σ ,µ),

where S is a finite state space, π is a prior probability distribution on S, σ : D → Σ(S,M) is a

mapping from the set of frame details D to the set Σ(S,M) of Blackwell experiments (signal struc-

tures) with state space S and some finite message space M, and µ is a finite-support5 probability

distribution over state-dependent utility functions u : S ×X → R. For convenience, we call σ a

framing function.

Thus, there is a population of agents who share a common prior regarding the state and in-

terpret the details of the framing as signals regarding the state. Different types of agents in the

population have different state-dependent utility functions6.

Denote by Md the random signal, associated with the Blackwell experiment σ (d), and by md
5Considering infinitely many population types does not change the analysis—this follows from the fact that the

primitive is a finite data set.
6An alternative models would allow for a heterogeneity in the prior beliefs and/or in the signal structures as well.

The corresponding analysis leads to similar results. We consider a less flexible model that still allows to represent a

wide variety of primitives.
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its generic realization. Denote by σ (d)(s,md) the probability of signal realization md conditional

on state s ∈ S; thus,

σ (d)(s,m) = P r(Md =m | s)

If the agent with state-dependent utility function u receives a collection of signals m = {Md =

md}d∈D ′ for some D ′ ⊆D, she forms a posterior belief p using Bayes formula

pm(s) =
π(s)P r

(
{Md =md}d∈D ′ | s

)
∑
t∈S π(t)P r

(
{Md =md}d∈D ′ | t

) (1)

Denote by um : X→R the corresponding expected utility function, that is:

um(x) ≡ E[u(x) | m] =
∑
s∈S

pm(s)us(x) (2)

We assume that signals associated with different frame details are independent.

CONDITION 1 (Conditional independence of signals):

P r
(
{Md =md}d∈D | s

)
=

∏
d∈D

P r
(
Md =md | s

)
(3)

2.3 Representation

Consider a BAUP model (S,π,σ ,µ). Given a subset of frame details D ′ ⊆ D, denote by MD ′ =

{Md}d∈D ′ the collection of random signals associated with Blackwell experiments σ (d) for d ∈ D ′.

We say that a BAUP model (S,π,σ ,µ) represents an extended random choice ρ if for all A ∈ X , f ∈ F,

and x ∈ A,

ρAf (x) =
∑
u

µ(u) · P r
({
uM(f )(x) ≥ uM(f )(y) ∀y ∈ A

})
(4)

where the summation is performed over all state-dependent utility functions u : S ×X →R such

that µ(u) > 0, and uM(f )(·) is a function given in eq. (2) where signal M(f ) associated with frame f

is random and distributed according to

P r
(
M(f ) = {md}d∈f

)
=

∑
s∈S

π(s) · P r
(
M(f ) = {md}d∈f

∣∣∣ s) =
∑
s∈S

π(s) ·
∏
d∈D

σ (d)(s,md) (5)

Note that the representation implies that the maximizer of the expected utility for each menu

under each frame is unique with probability one; in other words, ties in the expected utility occur

with probability zero.
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We offer two interpretations of a BAUP model. In the first interpretation, each agent in the

population does not know perfectly her own preferences regarding alternatives in X. We capture

this uncertainty via a state s ∈ S; the agent knows her utility us(x) of alternative x depending on

s. Absent further information, she uses prior π regarding the state s. A frame detail d reveals

some aspect of the agent’s preferences in the form of a signal Md with conditional distribution

P r(Md = m|s) = σ (d)(s,m); a frame consisting of several frame details reveals the corresponding

aspects of the agent’s preferences. Facing some menu under a particular frame, the agent chooses

the best alternative from this menu, calculating expected utility according to her posterior belief

about her preferences. The stochasticity of the observed choices comes from three sources. Two

of them emerge from the population heterogeneity: a random state-dependent utility type u—

known by the agent and distributed according to µ(·)—and a random sub-type s ∈ S—unknown

to the agent and distributed according to π(·). The third source of stochasticity is a random signal

M(f ) that induces a random posterior distribution pM(f )(·) of agent’s beliefs regarding her sub-

type s ∈ S. Implicitly in the representation, we require coherency of beliefs regarding s, because

prior π plays role both in the agent’s updating rule (eq. 1) and in the calculation of the resulting

extended random choice via formulas (4), (5).

In the second interpretation, the unknown state of the world s ∈ S represents conditions that

matter for the optimal choice; each choice problem, thus, belongs to one of |S | categories, but

agents do not know precisely what particular category they face. Each agent has a population

type given by her state-dependent (category-dependent) utility function u. Frame details reveal

information about the relevant category in the form of a random signal, and the agent evaluates an

alternative by its expected utility across different categories of problems. Thus, the three sources

of stochasticity in the representation are: first, a random category s ∈ S, second, a random agent

type u, and third, a random signal M(f ) regarding the relevant category of the choice problem.

Following the literature, we say that a random choice that provides choice frequencies for

various menus A ∈ X has a random utility representation if there is a distribution of linear orders7

over X such that the probability that item x ∈ A is the highest-rank alternative in menu A is equal

to the probability with which x is chosen from A. It is straightforward to see that within each

frame, a BAUP model reduces to a random utility model:

7A linear order over X is a complete transitive antisymmetric binary relation �⊆ X ×X. We use the symbol � to

denote the asymmetric part of �.
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Proposition 1. If an extended random choice ρ has a BAUP representation, then for each frame f ∈ F,

the random choice ρf has a random utility representation.

In particular, in a special case when the state space is singleton (|S | = 1), a BAUP model reduces

a single random utility model:

Corollary 1. If |S | = 1, then an extended random choice ρ has a BAUP representation if and only if the

following two conditions hold:

(1) ρf = ρg for all f ,g ∈ F;

(2) The random choice ρf has a random utility representation for all f ∈ F.

Recall that a classical random utility model is characterized in terms of the system of linear in-

equalities constructed recursively from the observed random choice8. Given an extended random

choice ρAf , let us define the following Block-Marschak linear polynomials recursively:

qf (x,∅) = ρXf (x) ∀x ∈ X, qf (x,A) =


ρX\Af (x)−

∑
B(A

qf (x,B) if x < A

0 if x ∈ A
(6)

Note that the summation in the formula above is performed over all subsets B of the set X that

are not subsets of the set A. If ρf has a random utility representation, the Block-Marschak poly-

nomial qf (x,A) gives the probability that set A is a strict upper counter set of item x; thus, if a

BAUP model represents ρ, it must be that qf (x,A) ≥ 0 for all x,A,f . Our first main result says that

these conditions are almost sufficient for the representation in the sense, that a BAUP model can

approximate choice frequencies arbitrary close when these conditions hold.

DEFINITION 1. An extended random choice ρ has a BAUP approximation if for any ε > 0 there

exists an extended random choice τ such that τ is represented by a BAUP model, and | ρAf (x) −

τAf (x) |< ε for all A ∈ X , x ∈ X, f ∈ F.

Theorem 1. An extended random choice ρ has a BAUP approximation if and only if qf (x,A) ≥ 0 for

all f ∈ F, A ∈ X , x ∈ A, where q are Block-Marschak polynomials defined in eq. (6). Moreover, if

qf (x,A) > 0 for all f ∈ F, A ∈ X , x < A, then ρ has a BAUP representation.
8Falmagne (1978), Barberá and Pattanaik (1986)
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Corollary 2. An extended random choice ρ has a BAUP approximation if and only if for each f ∈ F, the

random choice ρf has a random utility representation.

Theorem 1 is a negative result: a BAUP, as a general informational model of framing, (almost)

does not put restrictions on choice frequencies across different frames. Moreover, it is clear from

the proof of Theorem 1, that it continues to hold in case if the primitive of the model is not a

family of marginal distributions, but a joint distribution of choices across all frames instead. The

generality of our primitive—in particular, the flexibility of the set of frame details D and the set

of observable frames F—allows us to use Theorem 1 to formulate this negative result in several

contexts.

First, suppose F consists of singleton frames f = {df }. Then we may interpret Theorem 1’s

message as the statement that hidden belief updating that starts from a common prior almost

does not bring constraints on the resulted frequencies of random choices—in the sense that any

random choice that admits a random utility model within one frame can be approximated by

BAUP models.

Second, considering a set of frames F = {fi}Ni=1 that is nested: fi = {1,2, ..., i}, we can interpret

an extended random choice as a dynamic random choice where the agent gradually learns some

payoff-relevant information. Thus, a similar “almost everything goes” result holds for a dynamic

random choice with unobservable gradual learning—a result that one could infer from Proposi-

tion 6 of Frick et al. (2019)9 by restricting the menus to include only deterministic options and

restricting the set of menus in each period to be determined in period 1 (period 0 in their model).

Third, assume the analyst knows that some frames are more informative than others. Thus,

the analyst knows a transitive10 binary relation �inf ∈ F × F on the set frames. It turns out, there

is a structure of frame details that is coherent with �inf in the sense that f �inf g implies g ⊆ f .

For instance, this holds when D = {df }f ∈F , and f = {df } ∪ {dg ∈ D |f �inf g}. In this context, Theo-

rem 1 says that for a generic extended random choice consistent with random utility maximiza-

tion within each frame, it is (almost) impossible to infer which frame is more informative than

another—a conclusion, opposite to the results in the setup considered in Lu (2016). This follows

from the fact that the set of constraints in Theorem 1 is invariant with respect to all permutations

of the set of frames F→ F.
9Their primitive is dynamic stochastic choice from menus of lotteries of items and the continuation menu.

10Since the Blackwell order is transitive.
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3 Fixed State Space

In this section, we consider the implications of the knowledge of the relevant state space. Most

naturally, this corresponds to the interpretation of a BAUP model in the objective sense; that is,

there are |S | categories the represent various objective features of the choice situations that the

agent may face. The second interpretation is subjective, in which case we are interested in the

fixed set of the agent’s states of the mind—for instance, whether the agent fears heights or not.

3.1 Binary State Space

Let us start our analysis with the binary state space, S = {1,2}, and let {S,π,σ ,µ} be a BAUP model.

As it turns out to be, once we restrict the state space to be binary, there are more conditions

necessary for a BAUP representation (approximation) than those stated in Theorem 1. In this

section, we first provide calculations that illustrate reasons behind the emergence of these new

constraints that are specific to the binary state space, and then formalize these constraints in

Proposition 2. In the next section, we discuss how this intuition generalizes to non-binary state

spaces.

Consider some state-dependent utility u that occur with positive probability; that is, µ(u) > 0.

Consider items x,y,z ∈ X. Since we assume away ties in the BAUP model11, it is without loss to

focus only on the linear orders induced by the expected utility function. Let Uλ(a) = (1−λ)u1(a)+

λu2(a) be the expected utility of item a when the agent belief is p(2) = λ. If it is not the case that

one of x,y is always preferred to the other, there is some belief λxy that divides the set of beliefs

[0,1] to the range of beliefs for which x is preferred to y and the range of beliefs for which y is

preferred to x.

Let λxz and λyz be analogous beliefs that render items x and z, and items y and z corre-

spondingly indifferent for the agent. The three points λxy , λxz, λyz divide the space of beliefs

[0,1] by at most 4 distinct regions; for each of these regions, the expected utility Uλ induces

one linear order over x,y,z; the total number of such linear orders is, thus, no more than 4. Let

O = {xyz,xzy,yxz,yzx,zxy,zyx} be the set of all linear orders over alternatives x,y,z, where term

11According to the representation given by eq. (4).
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xyz means a linear order x � y � z, etc. Given a state-dependent utility u, let

O(u) =
{
�∈O

∣∣∣ ∃λ ∈ [0,1] : a � b ⇐⇒ Uλ(a) > Uλ(b) ∀a,b ∈ {x,y,z}
}

where the symbol � denotes the asymmetric part of the linear order �, and let

Θ = { O(u) | u is some state-dependent utility function }

One can figure out that Θ consists of the sets θ1 = {xyz,xzy,zxy,zyx}, θ2 = {xyz,yxz,yzx,zyx},

several subsets of θ1, θ2, and the sets that could be constructed from θ1 and θ2 and these subsets

by permutations of x,y,z. The expected utilities that give rise to types θ1 and θ2 are illustrated

in Figure 1. For instance, for θ1, we have 0 < λyz < λxz < λxy < 1, while for θ2, we have 0 < λxy <

λxz < λyz < 1.

Figure 1: Subsets of linear orders θ1 = {xyz,xzy,zxy,zyx} (left plot) and θ2 = {xyz,yxz, yzx,zyx}

(right plot) induced by the maximization of expected utility with beliefs λ ∈ [0,1].

Thus, each type θ ∈ Θ is a set of linear orders that could be exhibited by an agent with fixed

state-dependent utility function under various frames. Let us now think about the extended ran-

dom choice induced by a population of such agents. Take some set of linear orders ψ ⊆ O, and

suppose that for all θ ∈ Θ, ψ * θ. In other words, a subset of linear orders ψ is such that each

possible type θ of agent misses at least one of the linear orders in ψ—that is, for all θ ∈ Θ, there

is �∈ ψ such that �< θ. One example of such set of linear orders is ψ = {xyz,yzx,zxy}. Indeed, one

can see that yzx < θ1, zxy < θ2, and similarly for the other θ ∈Θ.

Let us analyse further ψ = {xyz,yzx,zxy}. Consider an agent with state-dependent utility u

such that µ(u) > 0, and, for an arbitrary frame f , let puf be the distribution of linear orders induced

13



by the expected utility of this agent, that is, by a BAUP model (S,π,σ ,δu) within this frame. Note

that sinceO(u) misses at least one of the linear orders xyz,yzx,zxy, it must be the case that at least

one of the probabilities puf (xyz), puf (yzx), puf (zxy) is zero for all frames f ∈ F. It follows that for

arbitrary frames f ,g,h ∈ F,

puf (xyz) + pug (yzx) + puh (zxy) ≤ 2

Summing this inequality over all agents in the population with weights µ(u), we get

pf (xyz) + pg(yzx) + ph(zxy) ≤ 2

where pf for f ∈ F is a distribution of linear orders induced by a BAUP model (S,π,σ ,µ). To

formulate this constraint in terms of the observed extended random choice, note that pf (xyz) =

ρ
{y,z}
f (y)− ρ{x,y,z}f (y), etc. For an arbitrary f ,g,h ∈ F and x,y,z ∈ X, denote by

W
xyz
f gh = ρ

{y,z}
f (y)− ρ{x,y,z}f (y) + ρ{x,z}g (z)− ρ{x,y,z}g (z) + ρ{x,y}h (x)− ρ{x,y,z}h (x) (7)

then W xyz
f gh ≤ 2 is a necessary condition for a BAUP representation.

Continuing this analysis, one can proceed with ψ = {xzy,yxz,yzx,zxy} and see that it also has

the property that ψ * θ for all θ ∈ Θ. Repeating the same arguments, we consider, for arbitrary

f ,g,h, j ∈ F and x,y,z ∈ X,

Q
xyz
f ghj = ρ

{y,z}
f (z)− ρ{x,y,z}f (z) + ρ{x,z}g (x)− ρ{x,y,z}g (x) + ρ{x,z}h (z)− ρ{x,y,z}h (z) + ρ{x,y}j (x)− ρ{x,y,z}j (x) (8)

Again, since for any type u in the population, at least one of the probabilities puf (xzy), pug (yxz),

puh (yzx), puj (zxy) must be zero, then Qxyzf ghj ≤ 3. We formalize our analysis in the next proposition.

Naturally, we say that an extended random choice has a BAUP approximation with a binary state

space if each model of the sequence that approximates the random choice according to Definition

1 has a binary state space.

Proposition 2. Suppose an extended random choice ρ has a BAUP approximation (representation) with

a binary state space. Then for any frames f ,g,h, j ∈ F and any items x,y,z ∈ X,W xyz
f gh ≤ 2 andQxyzf ghj ≤ 3,

where W and Q are linear polynomials of choice frequencies defined in eq. (7) and (8).

Note that constraints given in Proposition 2 emerge solely because the set of potential linear

orders induced by an expected utility is restricted when the state space is binary; this argument
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does not involve consideration of the beliefs’ updating. Therefore, this result is robust to the as-

sumptions regarding the actual updating procedure—for instance, if the agent uses Bayes formula

or not—as well as assumptions regarding common prior and common framing function. When-

ever the agents in the population are expected utility maximizers with binary state space, the

observed choice frequencies should satisfy conditions given in Proposition 2.

A continuation of analysis of linear orders over three items performed above does not bring

new constraints that are not implied by W xyz
f gh ≤ 2 and Qxyzf ghj ≤ 3. However, consideration of linear

orders over more than 3 items, most likely, brings new constraints necessary for a BAUP repre-

sentation with binary state space. The corresponding general analysis is performed in the next

section for an arbitrary size of the state space.

Finally, note that constraint W xyz
f gh ≤ 2 has a bite only when all 3 frames are distinct; indeed, if,

say, f = g, then pf (xyz) + pf (yzx) ≤ 1, hence W xyz
f f h = pf (xyz) + pf (yzx) + ph(zxy) ≤ 2 always holds.

Similarly, a constraint Qxyzf ghj ≤ 3 has a bite only when all 4 frames f ,g,h, j are distinct.

3.2 General State Space

Assume now that the relevant state space is known—meaning that the analyst knows |S |—but it

may have cardinality larger than 2. Building on the intuition developed in the previous section,

letO be the set of linear orders over items inX. For each state-dependent utility function u, define

O(u) =
{
�∈O

∣∣∣ ∃λ ∈ 4(S) : x � y ⇐⇒ Uλ(x) > Uλ(y) ∀x,y ∈ X
}

(9)

where

Uλ(x) =
∑
s∈S

λsus(x) ∀x ∈ X

is the corresponding expected utility function for belief λ ∈ 4(S). An important observation is

that if the set of alternative X is large enough, the set O(u) cannot contain all linear orders over

alternatives in X.

Lemma 1. For any size of the state space |S |, there is n such that if |X | ≥ n, then O(u) , O for any

state-dependent utility function u.

The intuition behind Lemma 1 generalizes the observation made by us for |S | = 2 that the

beliefs λxy , λxz, λyz divide the probability simplex by at most 4 regions where the induced linear
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orders remain constant, and uses a Combinatorics result12 regarding the slicing of the spaceR|S |−1

by a set of hyperplanes of dimension |S | − 2.

We consider now a large enough set of alternatives. Define the collection of sets of linear

orders Θ by

Θ = { O(u) | u is some state-dependent utility function } (10)

and for k = 1,2, ..., |X |!, define

Ψ k =
{
ψ ⊆O

∣∣∣ |ψ\θ| ≥ k ∀θ ∈Θ }
(11)

where |ψ\θ| is the number of elements of the set ψ that are not elements of the set θ. Thus, Ψ k

consists of the sets of linear orders ψ such that each type θ ∈Θ of the agent misses at least k linear

orders in ψ.

Suppose an extended random choice ρ has a BAUP representation with state space S. As we

know (Proposition 1), in this case, for each frame f ∈ F, there is a random utility representation

given by pf ∈ 4(O).

DEFINITION 2. Let O be the set of all linear orders on X and ρ be an extended random choice.

A family of distributions over linear orders (random utility representations) {pf }f ∈F , pf ∈ 4(O) is

associated with ρ if for each frame f ∈ F,

pf ({�∈O | x � y ∀y ∈ A\x}) = ρAf (x).

Theorem 2. Assume an extended random choice ρ has a BAUP approximation (representation) with

state space S, and let Ψ k for k = 1,2, ... be defined via eq. (9), (10), (11). Then there is a family of random

utility representations {pf }f ∈F associated with ρ such that for any k, for any ψ = (�1, ...,�n) ∈ Ψ k , for

any f1, ..., fn ∈ F
n∑
i=1

pfi (�i) ≤ n− k

Theorem 2 says that fixation of the state space of a BAUP model places a set of implicit re-

strictions on the observed choice frequencies across different frames that can be induced by such

12The result is given in the Introduction (page 1) of Orlik and Terao (2013), and, citing them, this result “was ob-

tained by L. Schliifli on page 39 of his great posthumous work, Theorie der vielfachen Kontinuitiit (Denkschriften der

Schweizerischen naturforschenden Gesellschaft, vol. 38, 1901)”.
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a model. Although the number of various restrictions placed on quantities {pf ∈F}f ∈F might be

large, the statement of the Theorem is relatively weak. Indeed, the result is formulated in terms

of the random utility representations rather than in terms of the observed choice frequencies, and,

most importantly, it does not deliver conditions necessary for all such representations, but rather

says that there exists a family of representation that satisfies all considered conditions. The next

Corollary, however, says that for rich enough choice data, these restrictions do have a bite.

Corollary 3. For any finite state space S, there are numbers n,m such that if |X | ≥ n and |F| ≥m, there

is an extended random choice ρ that admits a random utility representation within each frame, but does

not have a BAUP approximation with state space S.

Let us now show how to find some explicit constraints on the choice frequencies induced by

a BAUP model with a fixed state space. The result given in Theorem 2 is relatively weak because

the same random choice ρf within frame f may have multiple random utility representations pf .

In a special case when |X | = 3, the representation is always unique—the fact that we have used to

derive Proposition 2. Note that the Block-Marschak polynomial qf (x,A) gives the probability that

A is an upper counter set of x according to any random utility representation of ρf . Let Γ be the

set of all pairs (x,A), x ∈ A, A ⊆ X such that x < A:

Γ =
{
(x,A) ∈ X × 2X

∣∣∣ x < A}
(12)

Thus, a pair (x,A) ∈ Γ indexes a Block-Marschak polynomial qf (A,x). We are not interested in

x ∈ A, since in this case, qf (x,A) = 0 by definition. For k = 1,2, ..., define

Ξk =
{
ξ ⊆ Γ

∣∣∣∣ ∀θ ∈Θ ∃(x1,A1), ..., (xk ,Ak) ∈ ξ : θ∩
{
�∈O

∣∣∣ y � xi ⇔ y ∈ Ai
}

= ∅ ∀i = 1, ..., k
}

(13)

In words, an element ξ ∈ Ξk is a collection of pairs (x,A) such that for any type θ = O(u) of

the agent with some state-dependent utility function u, there are at least k distinct pairs (x,A) ∈ ξ

such that for each of these pairs, there is no linear order �∈ θ13 for which the set of items A is a

strict upper counter set of the item x.

Theorem 3. Assume extended random choice ρ has a BAUP approximation (representation) with state

space S, and let Ξk for k = 1,2, ... be defined via eq. (9), (10), (12), (13). Then for any k, for any

13That is, for θ = O(u), an order that could be induced by an expectation of utility us with respect to some belief

regarding the state s ∈ S.
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ξ = ((x1,A1), ..., (xn,An)) ∈ Ξk , for any f1, ..., fn ∈ F

n∑
i=1

qfi (xi ,Ai) ≤ n− k

where for each f ∈ F, qf is a Block-Marschak polynomial constructed from the random choice frequencies

ρf according to eq. (6).

Theorem 3 provides conditions necessary for a representation (or approximation) of a given

extended random choice with a BAUP model with a fixed state space S. These constraints are given

in terms of the familiar Block-Marschak polynomials that are used to characterize a classical ran-

dom utility model. The advantage of this formulation is that the Block-Marschak polynomials are

well-defined linear functions of the observed choice data. Theorem 3, thus, provides constraints

on the possible joint values of the random choice frequencies—expressed via a Block-Marschak

polynomial within each frame—across various frames in the form of a simple additive statistic.

As an illustration, let us show a way to derive Proposition 2 from Theorem 3. For that, let

X = {x,y,z}, and consider

ξ = { (y, {x}), (z, {y}), (x, {z}) }

Note that there is only one linear order such that {x} is a strict upper counter set of item y, namely,

x � y � z; and similarly, for pairs (z, {y}) and (x, {z}) the corresponding unique linear orders are

y � z � x and z � x � y. Thus, to prove that ξ ∈ Ξ1, we only need to argue that each θ ∈ Θ has

empty intersection with one of the singleton sets of linear orders {xyz}, {yzx}, {zxy} ⊆ O; but we

have already checked it in Section 3.1. Applying Theorem 3 for ξ ∈ Ξ1, we get

qf (y, {x}) + qg(z, {y}) + qh(x, {z}) ≤ 3− 1

Supstituting the expressions for the corresponding Block-Marschak polynomials, we getW xyz
f gh ≤ 2.

We can get the inequality Qxyzf ghj ≤ 3 in a similar fashion by considering ξ ′ = {(x, {z}), (x, {y}), (y, {z}),

(z, {x})} ∈ Ξ1.

It is worth to mention that, analogous to Proposition 2, both Theorem 2 and Theorem 3 also

hold when the agent’s updating procedure is not Bayesian. In fact, both theorems hold whenever

the agents in the population are expected utility maximizers with state space S. Finally, whether

Theorem 2 describes a different set of constraints on the extended random choice than Theorem 3

is an open question.
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4 Appendix

4.1 Proof of Proposition 1

Let BAUP model (S,π,σ ,µ) represents an extended random choice ρ. For each frame f , consider

the distribution r over utility functions v : X→R given by the following formula:

rf (v) =
∑
u

µ(u) · P r
(
uM(f ) = v

)
Then

ρAf (x) =
∑
u

µ(u) · P r
({
uM(f )(x) ≥ uM(f )(y) ∀y ∈ A

})
=

∑
u

µ(u) · P r
({
uM(f ) = v

∣∣∣ v(x) ≥ v(y) ∀y ∈ A
})

= rf
({
v
∣∣∣ v(x) ≥ v(y) ∀y ∈ A

})
Thus, for each frame f ∈ F, a random utility model rf represents the random choice ρf within this

frame. �

4.2 Proof of Corollary 1

When |S | = 1, the state space is irrelevant, and the expected utility is given by function u1. Hence,

ρAf (x) = µ
({
u

∣∣∣ u1(x) ≥ u1(y) ∀y ∈ A
})

The Corollary 1 follows immediately �

4.3 Proof of Theorem 1

We start with the second statement. Without loss of generality, assume that any combination of

frame details is a possible frame; that is, F = 2D .

Let O be the set of all linear orders (complete, transitive and antisymmetric binary relations)

on the set of alternatives X, and let O = OF be the set of vectors of linear orders indexed by the

frames f ∈ F. For o ∈ O, we write xof y when x ∈ X is ordered higher than y ∈ X according to order

of under frame f ∈ F. Let p ∈ 4O be a probability distribution over O. We say that a BAUP model

(S,π,σ ,µ) represents (or induces) probability distribution p over vectors of linear orders o ∈ O if

for all f ∈ F, and x,y ∈ A,

p(o) =
∑
u

µ(u) · P r
({
uM(f )(x) ≥ uM(f )(y)⇐⇒ xof y ∀f ∈ F

})
(14)
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where the summation is performed over all state-dependent utility functions u : S ×X →R such

that µ(u) > 0, and uM(f )(x) is a function given in eq. (2) of a random signal M(f ) associated with

frame f and distributed according to eq. (5).

Lemma 2. There is a state space S and a framing function σ : D → Σ(S) such that for any ε > 0,

there is a prior probability π ∈ 4(S) such that for any o ∈ O, there is a state-dependent utility function

u : S ×X→R such that BAUP model (S,π,σ ,δu) induces a distribution over vectors of orders p ∈ 4(O)

such that p(o) ≥ 1− ε, where δu denotes a degenerate distribution that places probability 1 on u.

Proof of Lemma 2. Consider a state space S = {0,1}D ; thus, s = (s1, ..., s|D |) ∈ S, where sd ∈ {0,1} for

d ∈ D. Consider binary message spaces Md = {d} × {0,1} for frame details d ∈ D. Denote by M

the space of joint messages (all combinations of messages/absence of messages for different frame

details) and define the signal structures σ (d) as follows:

σ (d)(s, (d, i)) = 1{sd = i} for i ∈ {0,1}

In other words, signal (d, i) reveals the d-th component of the state: sd = i.

Denote by ι the state ι ∈ S such that ιd = 1 for all d ∈D. Define π ∈ 4(S) as follows:

π(ι) = 1− ε, π(s) =
ε

2|D | − 1
if s , ι

For all f ∈ F, let Vf : X→R be the following utility function:

Vf (x) = |{y ∈ X |xof y}| (15)

Next, for s ∈ S, denote by

L(s) = {d ∈D |sd = 1}

and define the following state-dependent utility function:

us(x) = (π(s))−1 ·
∑

J : L(s)⊆J⊆D
(−1)|J |−|L(s)| · 2|D |−|J | ·VJ (x) + v(x)

where function v : X→ (0,1) will be specified later.

Consider an arbitrary frame f ∈ F. Note that state s is a vertex of a binary D-dimensional

cube. For convenience, denote by sf the projection of s on f ⊆ D. Consider signal realization
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ιf ≡ {(d,1)}d∈f ∈M. The corresponding expected utility of item x is

uιf (x) =

∑
s: sf =ιf π(s)us(x)∑

s: sf =ιf π(s)
=

=
1

π({s ∈ S |sf = ιf })
·

∑
s: sf =ιf

∑
J : L(s)⊆J⊆D

(−1)|J |−|L(s)| · 2|D |−|J | ·VJ (x) + v(x) =

=
1

1− 2|D |−2|f |
2|D |−1 · ε

·
∑

L,J : f ⊆L⊆J⊆D
(−1)|J |−|L| · 2|D |−|J | ·VJ (x) + v(x) =

=
1

1− 2|D |−2|f |
2|D |−1 · ε

·
[
2|D |−|f | ·Vf (x) +

∑
L,J : f ⊆L⊆J⊆D, J,f

(−1)|J |−|L| · 2|D |−|J | ·VJ (x)
]

+ v(x) =

=
1

1− 2|D |−2|f |
2|D |−1 · ε

·
[
2|D |−|f | ·Vf (x) +

∑
J : f ⊆J⊆D, J,f

(−1)|J | · 2|D |−|J | ·VJ (x) ·
∑

L: f ⊆L⊆J
(−1)−|L|

]
+ v(x) =

=
1

1− 2|D |−2|f |
2|D |−1 · ε

·Vf (x) + v(x)

where we used the Binomial theorem to get

∑
L: f ⊆L⊆J

(−1)−|L| =
|J |∑
k=|f |

∑
L: f ⊆L⊆J, |L|=k

(−1)−|L| = (−1)−|f |
|J |−|f |∑
k=0

 |J | − |f |k

 (−1)−k = (−1)−|f |·(1−1)|J |−|f | = 0

for J , f .

Claim 1. There is a function v : X → (0,1) such that for any frame f ∈ F, function uιf (·) represents

linear order of , and for any signal realization m ∈ {0,1}f , the expected utility um(·) represents some

linear order õ ∈O.

Proof. Note that [xof y and x , y] implies

1

1− 2|D |−2|f |
2|D |−1 · ε

·Vf (x)− 1

1− 2|D |−2|f |
2|D |−1 · ε

·Vf (y) >
1

1− 2|D |−2|f |
2|D |−1 · ε

≥ 1

Hence, uιf (x) ≥ uιf (y) if and only if xof y, proving that the first statement of the Claim holds for

any function v : X→ (0,1).

Next, note that for any signal realization m ∈M, for any x,y ∈ X,

um(x)−um(y) = Cm(x)−Cm(y) + v(x)− v(y)

where {Cm(x)}m∈M,x∈X is a finite set of quantities that does not depend on v(·). Let

C̃ = min
m∈M;x,y∈X

{
|Cm(x)−Cm(y)| such that |Cm(x)−Cm(y)| > 0

}
21



hence, C̃ > 0. Enumerate alternatives x ∈ X arbitrary by k = 1,2,3, ..., |X | and let k(x) to be the

number of alternative x. Define

v(x) = min{C̃,1} · e−k(x)

It is straightforward to see that um(x) , um(y) for all m ∈M, x,y ∈ X, hence the second statement

of the Claim holds as well. �

By Claim 1, BAUP model (S,π,σ ,δu) induces some distribution of linear orders p. Next, note

that for state ι = (1, ...,1),

σ (d)(ι, (d,1)) = 1

Hence, using Claim 1, we get

p(o) ≥ P r
({
Mf = ιf ∀f ∈ F

})
= π(ι) = 1− ε

proving the Lemma. �

Lemma 3. Let Y = {1, ...,n,n+ 1}, and yj = (yj1, ..., y
j
n+1) for j = 1,2, ... be a sequence such that yji ∈ 4(Y )

for all i, j, and yji −→ δi for all i = 1, ...,n,n + 1. Then for any p ∈ 4(Y ) such that p(i) > 0 for all

i = 1, ...,n,n+ 1, there is j such that p ∈ conv({yj1, ..., y
j
n+1}).

Proof of Lemma 3. Since
∑n+1
i=1 y

′
i = 1 for all y′ ∈ 4(Y ), it is enough to consider Y0 = {x ∈ Rn|xi ≥

0 ∀i ∈ {1, ...,n},
∑n
i=1 xi ≤ 1} and a sequence zj = (zj1, ..., z

j
n, z

j
n+1), j = 1,2, .. such that zj ∈ Y0, zji −→ ei

for i ∈ {1, ...,n}, where eii = 1, eik=0, for k , i, and zjn+1 −→ e0, where e0 = (0, ...,0). Consider now

q ∈ Y0 with qi = pi for i ∈ {1, ...,n}. Note that half-spaces xi ≥ 0,
∑n
i xi ≤ 1 include n = 1-dimensional

faces Fi = conv
(
{e0, e1, ..., en}\{ei}

)
, i = 0,1, ...,n of the polytope S0, and their intersection is equal to

Y0. Clearly, for large enough j, Fji = conv
(
{yj0, y

j
1, ..., y

j
n}\{y

j
i }
)

for i = 0,1, ...,n comprise the set of n−1

dimensional faces of Zj = conv{yj0, y
j
1, ..., y

j
n}. Since zji −→ ei , it follows that Zj is equal to the inter-

section of half-spaces H j
i , i ∈ {0,1, ...,n}, where H j

i = {x ∈ Rn|
∑n
k=1 ε

j
ikxk + xi ≥ ε

j
i0} for i ∈ {1, ...,n},

H
j
0 = {x ∈ Rn|

∑n
k=1(1 + εj0k)xk ≤ 1 + εj00} for some εjik −→ 0. Since qi > 0, and

∑n
i=1 qi < 1, for large

enough j,
∑n
k=1 ε

j
ikqk + qi ≥ ε

j
i0, and

∑n
k=1(1 + εj0k)qk ≤ 1 + εj00. Thus, q ∈ H j

i for all i ∈ {0,1, ...,n},

hence q ∈ Zj , and p ∈ conv({yj1, ..., y
j
n+1}). �
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Lemma 4. There is a state space S and a framing function σ : D → Σ(S) such that if the distribution

p ∈ 4O of vectors of linear orders satisfies p(o) > 0 for all o ∈ O, then there is a prior π ∈ 4(S) and a

distribution over state-dependent utility functions µ such that the BAUP model (S,π,σ ,µ) induces p.

Proof of Lemma 4. Let S be a state space, σ be a framing function, and, for given ε > 0, let π ∈ 4(S)

be a prior probability and for each o ∈ O, let uε(o) : S ×X→R be a state-dependent utility func-

tion such that (S,π,σ ,δuεo ) induces a distribution of vectors of linear orders pεo with the property

pεo(o) ≥ 1 − ε. By Lemma 2, we can find such objects. Next, a space 4O of a probability distribu-

tions over vectors of linear orders is a |X!||F|-dimensional probability simplex, and pεo −→ δo for

ε −→ 0. Therefore, by Lemma 3, for small enough ε, p ∈ conv
(
{pεo }o∈O

)
, hence p =

∑
o∈Oαop

ε
o for

some convex weights α. Consider a distribution over state-dependent utility functions µ such that

µ(uεo ) = αo, then a BAUP model (S,π,σ ,µ) represents p. �

Now, let ρ be an extended random choice such that qf (A,x) > 0 for all f ∈ F, A ∈ X , x ∈ A,

where quantities q are defined in eq. (6). Consider ρ̃ : F ×X ×X→R defined by

ρ̃Af (x) =
1

1− ε
ρAf (x)− ε

1− ε
· 1{x ∈ A}
|A|

where ε > 0 is a small parameter. Note that ρ̃Af (x) = 0 for x < A, and
∑
x∈A ρ̃

A
f (x) = 1. More-

over, since ρAf (x) = qf (x,X\A) +
∑
B(A qf (x,B) > 0 for x ∈ A, it follows that for small enough ε,

ρ̃Af (x) > 0 for all f ∈ F, A ∈ X , x ∈ A, hence ρ̃ is an extended random choice. Let q̃ be an associated

with ρ̃ set of linear polynomials according to eq. (6). Then for small enough ε, q̃Af (x) ≥ 0 for all

f ∈ F, A ∈ X , x ∈ A. For each frame f , by the results of Falmagne (1978), ρ̃f admits a random

utility representation; following Barberá and Pattanaik (1986), we consider the associated distri-

bution over linear orders τ̃f ∈ 4(O). Let τunif orm be a uniform distribution over linear orders

given by τunif orm(d) = 1/ |O| for all d ∈ O. Notice that τunif orm represents random choice given by

P r(choose x from A) =
1{x ∈ A}
|A|

. Since

ρAf (x) = (1− ε) · ρ̃Af (x) + ε · 1{x ∈ A}
|A|

it follows that ρf has a random utility (random order) representation given by

τf = (1− ε) · τ̃f + ε · τunif orm
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Construct a distribution of linear orders p ∈ O given by

p(o) =
∏
f ∈F

τf (of )

Note that, since τf (of ) ≥ ε/ |O|, then for any o ∈ O, p(o) ≥
( ε
|O|

)|F|
> 0. By Lemma 4, p has some

BAUP representation (S,π,σ ,µ). Since marginal distributions of p are given by τf for each frame f ,

and they comprise random utility representations of random choice ρf for each f , then (S,π,σ ,µ)

is a BAUP representaion of the extended random choice ρ. Thus, we have proven the second

statement of the Theorem.14

Suppose now that qf (x,A) ≥ 0 for all f ∈ F, A ∈ X , x ∈ A, and let ε > 0 is given. Consider an

extended random choice τ given by

τAf (x) = (1− ε/2) · ρAf (x) + (ε/2) · 1{x ∈ A}
|A|

Then

|ρAf (x)− τAf (x)| ≤ (ε/2) ·
∣∣∣∣1{x ∈ A}|A|

− ρAf (x)
∣∣∣∣ < ε

Next, let qunif orm(x,A) for x ∈ X, A ∈ X be the Block-Marschak polynomials associated with the

uniform random choice P r(choose x from A) =
1{x ∈ A}
|A|

. According to Barberá and Pattanaik

(1986), q(x,A) is the probability that A is an upper counter set of x according to a random utility

model that rationalizes the random choice. Since uniform distribution over linear orders ratio-

nalizes uniform random choice, it follows that qunif orm(x,A) > 0 for all A ∈ X , a < A. Let q̃f (x,A)

for f ∈ F, A ∈ X , x ∈ A be Block-Marschak polynomials constructed according to eq. 6 from the

extended random choice τ , then

q̃f (x,A) = (1− ε/2) · qf (x,A) + (ε/2) · qunif orm(x,A)

Hence, q̃f (x,A) > 0 for all f ∈ F, A ∈ X , x ∈ A. By the proven second statement of the Theorem, the

extended random choice τ admits a BAUP representation. Since this holds for arbitrary ε > 0, the

if part of the first statement of the Theorem is proven.

Finally, assume that an extended random choice ρ has a BAUP approximation given by a se-

quence of BAUP models
{(
Sj ,πj ,σ j ,µj

)}
j=1,2,...

. For any j, a BAUP model
(
Sj ,πj ,σ j ,µj

)
induces a

14To see that our assumption F = 2D is without loss of generality, notice that we can always augment the set of frames

to 2D be creating fictitious random choice frequencies that replicate those in one of the existing frames. We then can

apply the proof for the case F = 2D
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random utility model within each frame f ∈ F with the induced random choice ρjf . By the results

of Falmagne (1978), it must be that qjf (x,A) ≥ 0 for the associated Block-Marschak polynomials.

Since ρjf −→ ρf for every f ∈ F, it follows that qjf (x,A) → qf (x,A), implying qf (x,A) ≥ 0 for all

f ∈ F, A ∈ X , x ∈ A. The only if part of the first statement of the Theorem is proven. �

4.4 Proof of Corollary 2

The Corollary follows immediately from Theorem 1 and the results of Falmagne (1978), Barberá

and Pattanaik (1986) that the random choice ρf has a random utility representation if and only if

qf (x,A) ≥ 0 for all x ∈ X, A ∈ X . �

4.5 Proof of Proposition 2

The major part of the proof is given in our analysis in Section 3.1. We complement it by calculating

the set Θ. Note also that for our purposes, we do not need to calculate the set Θ precisely; it suffice

to calculate a set Θ0 ⊆ Θ such that for each θ ∈ Θ, there is θ0 ∈ Θ0 such that θ ⊆ θ0. It follows

from the fact that ψ * θ0 for all θ0 ∈Θ0 if and only if ψ * θ for all θ ∈Θ.

Thus, it is without loss of generality to assume that both u1(·) and u2(·) do not exhibit ties.

There is always a permutation of x,y,z such that u1(x) > u1(y) > u1(z). If u2(z) > u2(y) > u2(x), then

either O(u) = θ1 = {xyz,xzy,zxy,zyx}, or O(u) = θ2 = {xyz,yxz,yzx,zyx}; see Figure 1. If u2(y) >

u2(z) > u2(x), then O(u) = {xyz,yxz,yzx} ⊂ θ2. If u2(z) > u2(x) > u2(y), then O(u) = {xyz,xzy,zxy} ⊂

θ1. If u2(y) > u2(x) > u2(z), then O(u) = {xyz,yxz} ⊂ θ2. If u2(x) > u2(z) > u2(y), then O(u) =

{xyz,xzy} ⊂ θ1. Finally, if u2(x) > u2(y) > u2(z), then O(u) = {xyz} ⊂ θ1,θ2. It follows that the set

Θ0 consists of the sets θ1,θ2 and the sets induced from θ1 and θ2 by the permutation of items

x,y,z, supporting the analysis provided in Section 3.1.

Next, consider ψ = {xyz,yzx,zxy}. Note that ψ * θ1,θ2. Next, the orbit of ψ with respect to

permutations of x,y,z consists of ψ and ψ′ = {yxz,xzy,zyx}. We can check that yxz < θ1, and

xzy < θ2, proving that ψ is not a subset of any θ ∈ Θ0, and hence, ψ is not a subset of any θ ∈ Θ.

The rest of the analysis for the necessity of W xyz
f gh ≤ 2 is provided in Section 3.1.

Consider now ψ = {xzy,yxz,yzx,zxy}. Since |ψ| = 4 = |θ1| = |θ2|, it suffice to see that ψ is not a

result of applying of some permutation of x,y,z to θ1, since the latter always features only 2 and

not 3 different items on the top of the preference order, and, similarly, it is not a result of applying
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of some permutation of x,y,z to θ2, since the latter always features only 2 and not 3 different

items at the bottom of the preference order. The rest of the analysis for the necessity of Qxyzf ghj ≤ 3

is provided in Section 3.1. �

4.6 Proof of Lemma 1

Let |X | = n, and assume O(u) = O for a state-dependent utility function u. Consider a probability

simplex 4S as a subset of R|S |−1 consisting of points p ∈ R|S |−1 such that pi ≥ 0,
∑|S |−1
i=1 pi ≤ 1. Define

(expected) utility of item x ∈ X depending on p ∈ R|S |−1 to be

V (p,x) =
|S |−1∑
i=1

pi ·ui(x) +

1−
|S |−1∑
i=1

pi

u|S |(x)

Since all linear orders in O are induced by an expected utility for some π ∈ 4S, it follows that for

each pair of items x,y ∈ X, there is an open half-space of R|S |−1 such that V (p,x) > V (p,y) and an

open half-space of R|S |−1 such that V (p,y) > V (p,x), divided by an |S | − 2 dimensional hyperplane

consisting of points p such that V (p,x) = V (p,y). Thus, n(n−1)
2 hyperplanes given by equations

V (p,x) = V (p,y) for various pairs x,y ∈ X divide R|S |−1 on multiple cells. Within each cell, the

expected utility V (p,x) induces the same linear order over X. The total number of linear orders

induced by V (p, ·) for various p may not exceed the maximum number of potential cells Y . By

Orlik and Terao (2013) (page 1),

Y =
|S |−1∑
k=0

 n(n− 1)/2

k


where

 ml
 =

m!
l!(m− l)!

is a Binomial coefficient. Since |O| = |X |! = n!, we have

|S |−1∑
k=0

 n(n− 1)/2

k

 ≥ n!

For n > 2|S |, we have

n! ≤
|S |−1∑
k=0

 n(n− 1)/2

k

 ≤ |S | ·
 n(n− 1)/2

|S |

 ≤ |S | · (n2/2
)|S |

Since any fixed k, n! > const ·nk for large enough n, the above inequality does not hold for large

enough n. Hence, for large enough n = |X |, O(u) ,O, proving the Lemma. �
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4.7 Proof of Theorem 2

Suppose an extended random choice ρ has a BAUP representation (S,π,σ ,µ). For each u ∈ supp(µ),

consider an induced family of random utility representations {puf }f ∈F given by

puf (�) = P r
({
x � y =⇒ UM(f )(x) > UM(f )(y) ∀x,y ∈ X

})
and a family of random utility representations {pf }f ∈F given by

pf (�) =
∑
u

µ(u)puf (�i)

Consider arbitrary ψ = {�1, ...,�n} ∈ Ψ k , then for any state-dependent utility function u, there are

linear orders �i1 , ...,�ik∈ ψ\O(u). It follows from the definition of O(u) that

puf (�ij ) = 0 ∀j = 1, ..., k

Hence,
n∑
i=1

puf (�i) =
n∑
i=1

1{i , i1, ..., ik} · puf (�i) ≤
n∑
i=1

1{i , i1, ..., ik} = n− k

It follows that

n∑
i=1

pf (�i) =
n∑
i=1

∑
u

µ(u)puf (�i) =
∑
u

µ(u)
n∑
i=1

puf (�i) ≤ n− k

Finally,

pf
({
�∈O|x � y ∀y ∈ A\x

})
=

∑
u

µ(u)P r
({
UM(f )(x) > UM(f )(y) ∀y ∈ A\x

})
= ρAf (x)

Thus, a family of random utility models {pf }f ∈F satisfies all desired properties. Since non-strict

inequalities are preserved in the limit, the statement also holds for a BAUP approximation with

state space |S |. �

4.8 Proof of Corollary 3

Let |X | = n, |F| =m = n!, and let O = {�1, ...,�m} be the set of linear orders on X; enumerate frames

by f1, ..., fm ∈ F. Consider an extended random choice ρ induced by the family of distributions of

linear {pf }f ∈F such that pfi = δ�i . That is,

ρAfi (x) = 1{x �i y ∀y ∈ A\x}
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Towards a contradiction, assume that ρ has a BAUP approximation (S,πj ,σ j ,µj ), j = 1,2, ...with

state space S. That is, for any ε > 0, if j is large enough, a BAUP model (S,πj ,σ j ,µj ) induces an

extended random choice τ j such that
∣∣∣ρAf (x)−

(
τ j

)A
f

(x)
∣∣∣ < ε for all x,A,f .

Claim 2. The family {pf }f ∈F is the unique family of random utility representations associated with the

extended random choice ρ that it induces.

Proof. Assume that some other family {tf }f ∈F is associated with the same extended random choice.

Then there is a frame fi ∈ F and a pair of items x,y such that x �i y and tf ({�∈ O|x � y}) < 1, but

this contradicts τ being associated with ρ, since ρ{x,y}f (x) = 1. �

By Lemma 1, if n is large enough, O < Θ. By Theorem 2, for any BAUP model (S,πj ,σ j ,µj ),

there is a family of random utility representations pj (in fact, induced by the corresponding BAUP

model) with the property that
|O|∑
i=1

p
j
fi

(�i) ≤ |O| − 1

Consider ε = (2|O|)−2. Then the above inequality implies that there is i ∈ {1, ..., |O|} and a linear

order �,�i such that pjfi (�) > ε. Since �,�i , then there are items x,y ∈ X such that x �i y and

y � x. Hence, ρ{x,y}fi
(x) = 1, (τ j ){x,y}fi

(x) < 1 − ε. Since such frame and pair of items could be found

for any j, this contradicts our assumption that (S,πj ,σ j ,µj ) approximates ρ. �

4.9 Proof of Theorem 3

The proof of Theorem 3 partially repeats the proof of Theorem 2.

Assume that an extended random choice ρ has a BAUP representation (S,π,σ ,µ) with state

space S. For each u ∈ supp(µ), consider an induced family of random utility representations

{puf }f ∈F given by

puf (�) = P r
({
x � y =⇒ UM(f )(x) > UM(f )(y) ∀x,y ∈ X

})
and a family of random utility representations {pf }f ∈F given by

pf (�) =
∑
u

µ(u)puf (�i)

28



Note that pf represents ρf for each frame f ∈ F. Therefore,15 for x < A,

qf (x,A) = pf
({
�∈O

∣∣∣ y � x ⇔ y ∈ A
})

Then
n∑
i=1

qfi (xi ,Ai) =
n∑
i=1

∑
u

µ(u)pufi
({
�∈O

∣∣∣ y � xi ⇔ y ∈ Ai
})

=

∑
u

µ(u)
n∑
i=1

pufi

({
�∈O

∣∣∣ y � xi ⇔ y ∈ Ai
})
≤ n− k

where we used the definition of Ξ to find that for any state-dependent utility function u, there are

at least k pairs (x,A) such that for any f , puf
({
�∈O

∣∣∣ y � x ⇔ y ∈ A
})

= 0 and, therefore,

n∑
i=1

pufi

({
�∈O

∣∣∣ y � xi ⇔ y ∈ Ai
})
≤ n− k

for any state-dependent utility function u. Thus, we have proven the necessity of constraints for

a BAUP representation with a fixed state space S. Since the constraints are linear polynomials in

choice frequencies, they continue to hold for a BAUP approximation with state space S as well. �
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