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Abstract

I show that it is without loss of generality to consider frames of choice problems
as Blackwell experiments defined on the space of subjective states of mind of the
decision maker if analyst observes only random choice. The model has non-trivial
empirical content when two conditions hold: (1) frames are observable and data
contains choice probabilities for different menus within the same frame and (2)
analyst makes a conjecture about the maximum size of subjective state space. I
show that without these two conditions “no empirical content” result holds under
strong structural assumptions with an application to the dynamic random choice
where decision maker gradually learns her preferences.

Keywords: Random Choice, Framing Effects, Menu Effects, Context Dependence,
Learning

1 Introduction

People may be uncertain about their preferences: probably, nobody knows her-
self/himself perfectly. Framing of a situation in which agent makes a decision may tell
her something about herself, triggering a particular path of self-cognition. Are we brave
enough, what song do we like most of all, and what sort of ice cream do we prefer this
summer - answers on these questions may depend on the environment, and people could
make different choices subject to seemingly irrelevant details. Expected utility framework
is one of the classical models dealing with uncertainty, and it is tempting to apply it and
see how “Bayesian” decision makers live with their varying tastes. In the presence of id-
iosyncratic uncertainty decisions become stochastic, and it is natural to consider random
choice data in our study.

A good definition of a frame is given in Salant and Rubinstein (2008). In attempt
to paraphrase it, let’s say that frame is the way the particular choice problem is presented
to the decision maker. There is an important difference between the case when frame
contains some information about the objective qualities of alternatives and when it does
not. I consider only the latter case in line with Salant and Rubinstein (2008). Under this
definition, we may consider framing effects as a deviation from “rationality” represented
by WARP in the deterministic setting or random utility model in the stochastic choice
setting with the population interpretation of random choice. One might think that DM for
some reasons chooses according to different orders of alternatives when she faces different
frames. From this perspective, various theoretical models consider particular reasons of
why this occurs: limited attention, reference points, attraction and similarity effects, etc.
This paper studies situations when a rational expected utility maximizer might as well
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exhibit the same behavior; this happens when framing of a choice problem interferes with
DM’s process of learning her intrinsic valuations of alternatives.

Let’s start with one of the framing effects studied in literature, contex dependence,
when presence or absence of seemingly irrelevant alternatives in menu affects agent’s
decisions (Huber, Payne, and Puto (1982), Tversky and Simonson (1993)). Consider an
example of context dependence that gives us intuition how uncertain tastes could lead
to preference reversal across different menus. Imagine a clerk who comes to a tourist
agency searching for a place to go during her vacation a month later. There are only two
different options though: either a mountain trip (m) or a holiday at the beach (b). Both
options have some benefits and shortcomings, but after thinking for a while she decides
to go to a mountain trip: 𝑐({m, b}) = {m}. In a counterfactual situation tourist agency
also has a special offer: a skydiving tomorrow (p). Decision maker does not want to do
anything tomorrow, neither she wants to jump with a parachute. However she imagines
vividly the possibility of her falling down to the earth from the sky and realizes that it
is somehow frightening. Thus she reconsiders her attitude toward danger of a mountain
trip and decides to spent her vacation at the beach: 𝑐({m, b, p }) = {b}. It may also
be the case that she sticks to her initial choice because she realizes that she is not that
afraid of height: 𝑐({m, b, p}) = {m}. Alternatively, we could turn around the whole story:
𝑐({𝑚, 𝑏}) = {𝑏}, but 𝑐({𝑚, 𝑏, 𝑝}) = {𝑚}, because in the latter case DM finds herself to
be braver person than she originally thought. And, of course, nothing prevents DM from
choosing 𝑏 from both menus.

We can argue that all four considered choice functions (𝑐({𝑚, 𝑏}), 𝑐({𝑚, 𝑏, 𝑝})) ∈
{(𝑚,𝑚), (𝑚, 𝑏), (𝑏,𝑚), (𝑏, 𝑏)} are rationalizable for a Bayesian agent in the deterministic
choice model. For example, let 𝑆 = {𝑏𝑟𝑎𝑣𝑒, 𝑢𝑠𝑢𝑎𝑙} be the space of states of mind,
and utilities are given in the table below. Suppose firstly that the prior DM’s belief

state of mind | u(mountain) u(beach) u(parachute)
brave | 4 1 0
usual | -1 1 -5
0.5 brave + 0.5 usual | 1.5 1 -2.5
0.1 brave + 0.9 usual | -0.5 1 -4.5

is 𝜋(𝑏𝑟𝑎𝑣𝑒) = 0.5 and that she does not get new information regarding her tastes while
observing menu {𝑚, 𝑏}. Then mountain trip is the best option for her. Now when she faces
a menu including a parachute, she partially1 learns her intrinsic state of mind and assigns
posterior probability 𝑝 = 0.1 to being brave (we consider this posterior as one of possible
realizations of the distribution of posteriors from the ex-ante point of view). Then we
observe a preference reversal: 𝑐({𝑚, 𝑠, 𝑝}) = {𝑠}. To justify 𝑐({𝑚, 𝑠}) = 𝑚, 𝑐({𝑚, 𝑠, 𝑝}) =
𝑠, let vice versa the prior be 𝜋′(𝑏𝑟𝑎𝑣𝑒) = 0.1, and the realization of posterior be 𝑝′(𝑏𝑟𝑎𝑣𝑒) =
0.5.

Stochastic choice data generated by a Bayesian model provides us with some restric-
tions. Indeed, if we assume that introducing a third option gives DM more information
about her own tastes, then the distribution of posteriors should be a mean preserving
spread of the prior. In other words, if agent chooses a mountain trip when she is more

1This example works with full revelation of uncertainty as well (say, 𝑝 = 0 corresponds to the agent
who is certain that she is a usual type).
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uncertain about her bravery, she should assign some positive probability to choose a
mountain trip after she learns more about herself2. It is natural to assume that the re-
sulting random choice should be consistent with the prior DM’s beliefs, in other words
that she forms correct expectations about herself being a brave or a usual person. There
is no reason to consider Bayesian model without this consistency condition, otherwise we
would not have any restrictions on the observed choice.

The assumption that frame does not reveal any information about the objective
state is important. There are at least two stories about the objective information that
are not considered in this paper. Firstly, it might be that framing of a choice problem
directly tells DM some information that she has not known before. For example, an
advertisement about skydiving says that, based on the statistics of deaths in mountains,
jumping with a parachute is less dangerous than going to a mountain trip. We can say
that agent is uncertain about danger of a mountain trip, and 𝑆 = {𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠, 𝑛𝑜𝑟𝑚𝑎𝑙}
is an objective state space. In this case agent always gets a signal that mountains are
objectively dangerous (𝑠 = 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠) after looking at the skydiving advertisement.
Thus it is possible that she never chooses mountain trip from menu {𝑚, 𝑏, 𝑝}.

The second possibility is that menu could reveal information about the objective
state of the world indirectly. For example, tourist agency could have different levels of
expertise in handling risky events. The objective state space is 𝑆 = {𝑒𝑥𝑝𝑒𝑟𝑡, 𝑎𝑚𝑎𝑡𝑢𝑒𝑟}.
DM thinks that if 𝑠 = 𝑒𝑥𝑝𝑒𝑟𝑡, tourist agency can offer skydiving, and thus when she
observes menu 𝐴 = {𝑚, 𝑏, 𝑝}, the posterior probability that tourist agency has necessary
expertise is high, and DM chooses 𝑐({𝑚, 𝑏, 𝑝}) = 𝑚. If 𝑠 = 𝑎𝑚𝑎𝑡𝑢𝑒𝑟, then, most probably,
tourist agency is unable to offer parachute jumps; thus when DM observes 𝐴 = {𝑚, 𝑏}, she
chooses 𝑐({𝑚, 𝑏}) = 𝑏. In this example menu itself serves as a signal realization, revealing
the type of tourist agency. Piermont (2017) studies this case and gets “everything is
possible” result: without further restrictions any choice behavior could be rationalized
with the help of Bayesian frames with objective state space, when menus are associated
with signal realizations.

The population interpretation of random choice is good for understanding the
difference between models of Bayesian frames with and without revelation of objec-
tive information. When state space is objective (i.e. 𝑆 = {𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠, 𝑛𝑜𝑟𝑚𝑎𝑙} or
𝑆 = {𝑒𝑥𝑝𝑒𝑟𝑡, 𝑎𝑚𝑎𝑡𝑢𝑒𝑟}), all agents in the population get the same signal realization
after observing menu {𝑚, 𝑏, 𝑝} (roughly speaking, “𝑠 = 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠” or “𝑠 = 𝑒𝑥𝑝𝑒𝑟𝑡” in
the considered examples), and the same is true for menu {𝑚, 𝑏} (“use your prior” or
“𝑠 = 𝑎𝑚𝑎𝑡𝑢𝑒𝑟” respectively). When state space is subjective (i.e. 𝑆 = {𝑏𝑟𝑎𝑣𝑒, 𝑢𝑠𝑢𝑎𝑙}),
we may assume that states of minds are realized independently for different agents: the
presence of skydiving option only triggers the revelation of uncertainty for each agent,
but does not serve as a correlation device for the states of minds of different people.

Our basic model (which we call a Bayesian agent with uncertain preferences, or
BAUPmodel) consists of an unobserved by analyst subjective state space, state-dependent
utility function, beliefs and signal structure which associates some Blackwell experiment
with each frame. This model, as usual for models with state-dependent utilities, is highly
flexible. It has a characterization in terms of one relation revealed via stochastic choice.

2DM could be indifferent between 𝑚 and 𝑏 when facing both menus and choose with the help of a
tie-breaking rule. We rule out this possibility in the formal model.
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We say that one alternative is revealed to dominate another if the first one is chosen for
sure from some menu including both of them. Expected utility framework implies that
this Revealed Dominance relation should be acyclic. Theorem 1 argues that this is also
a sufficient condition for the representation of random choice by BAUP model. Hence
Revealed Dominance Acyclicity axiom provides a characterization of BAUP model.

Theorem 1 is not a strong result though: almost every random choice is rational-
izable by BAUP model. We then start to search for a natural structural assumptions
providing some discipline to our model. One could try to put restrictions on each of the
components of BAUP model separately or consider some complex restrictions. The four
components are: state space, utility function, prior probability distribution and structure
of signals. Prior probability distribution is not the best object to work with by two rea-
sons: firstly, there is a classical issue with the separation of utilities and probabilities,
and secondly, probability distribution is a good instrument to fit the other distribution
(random choice), thus it is not wise to break it. Putting restrictions on utilities is more
reasonable; however, it might be too rude way to discipline the model. One might ar-
gue that we could be happy with an “ad hoc” model providing restriction on preference
flexibility of decision makers, and we do not need Bayesian structures to proceed further.
Thus it would be better for our purposes if we derive restrictions on preference’s flexibility
of DM endogenously from some considerations involving the assumption that agents are
expected utility maximizers.

We pay our attention to the last two components of BAUP model: state space and
signal structure. The extensive treatment of them is given in the main part of the paper,
and it is not necessary to go into details here. The main results are given by Theorems
1-4. We start by definition of fundamentals, then go over the benchmark Random Utility
model, and then introduce our main framework: BAUP model. Then we formulate and
prove Theorem 1. Next in Theorem 2 we show how to justify any non-degenerate random
choice by a decision maker who has one order of alternatives in a given state and the
reverse of that order in the another state. It turns out that this preference variation is
enough even if DM has only two described above subjective states.

One important feature of this study is that we consider a situation when analyst is
able to observe the frames (as in the Salant and Rubinstein (2008) paper). Working in this
environment, we provide an extensive treatment of models with constrains on the struc-
ture of signals coming from the framings of choice problems. Results are summarized
in “everything goes” Theorem 3 which says that reasonable constrains on information
structure does not provide any discipline to the BAUP model. However the ability to
observe frames allows us to get some necessary conditions imposed on the random choice
which admits BAUP representation with state space of size 2. An example of such condi-
tion includes a probabilities of choice under 3 different frames: 𝛼, 𝛽, 𝛾. Let 𝜌𝐴𝛽 (𝑥) be the
probability that DM chooses 𝑥 from menu 𝐴 when choice problem has frame 𝛽. Then the
following condition holds:

𝜌𝑥𝑦𝛼 (𝑥)− 𝜌𝑥𝑦𝑧𝛼 (𝑥) + 𝜌𝑦𝑧𝛽 (𝑦)− 𝜌𝑥𝑦𝑧𝛽 (𝑦) + 𝜌𝑥𝑧𝛾 (𝑧)− 𝜌𝑥𝑦𝑧𝛾 (𝑧) < 2 (1)

Observe that random utility model requires this polynomial to be ≤ 1, and without any
restrictions it could be as large as 3. Therefore, BAUP model with state space of size 2
does provide us with moderate framing effects. Theorem 4 summarizes our findings about
representations with restrictions on the size of state space, when analyst observes frames.
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Propositions are given for reference and does not provide us with some insights
outside of the scope of the model. Lemma 1 and Lemma 3 are key technical lemmas
needed for the proofs of Theorem 3 and Theorem 4 respectively. We proceed with a
review of the related literature.

1.1 Related Literature

The benchmark model of random choice for current paper is random utility model,
which describes a choice of a population of rational agents whose choice function satis-
fies WARP. Falmagne (1978) provides a characterization of this model in terms of linear
inequalities on random choice probabilities. McFadden (2005) considers random choice
induced by a population of agents given by a general deterministic choice function. Fram-
ing effects are studied in a great number of papers. To name a few of them, Huber,
Payne, and Puto (1982), Tversky and Simonson (1993) and relatively recent paper Salant
and Rubinstein (2008) from which we borrowed a couple of definitions and examples. To
the best of my knowledge, the first paper describing preference uncertainty via subjective
state space is Kreps (1979) followed by a more deliberate consideration by Dekel, Lipman,
and Rustichini (2001)

Somewhat more recent and related to the current study papers are Karni and
Safra (2016), Lu (2016), Ahn and Sarver (2013), Manzini and Mariotti (2014), Dillen-
berger et al. (2014). Two papers, Shmaya and Yariv (2016) and Piermont (2017), contains
some “everything is possible” results similar to Theorems 1,2 and 3 of the current paper.

There are two closely related papers which study the connection between DM’s pri-
vate information over subjective state space and the observed stochastic choice. Naten-
zon (2012) considers a DM who learns her state of mind gradually by thinking about a
choice problem. In his setup signals are associated with alternatives (similar to Example
3 in the current paper). He analyzes DM’s random choice with the help of “Bayesian
Probit” model in continuous time focusing on the attraction and similarity effects, when
introduction of similar object to the menu correspondingly increases and decreases proba-
bility to choose the given object. Natenson finds that if signals coming from the presence
of these two objects are correlated and objects are sufficiently similar, then attraction
effect appears at the beginning of learning process, when DM is relatively less informed
about her preferences, and then it reverses to the similarity effect when time goes on. The
current paper complements Natenson’s analysis by considering a general non-parametric
setup. Since we get “everything goes” result for the similar setup3 (Theorem 3), but
with less structure, it is interesting to analyze what particular assumptions could give us
something meaningful, and to what extend they are without loss of generality.

Recent study (Frick, Iijima, and Strzalecki (2017)) deals with the dynamic random
choice over lotteries with the presence of private information in great generality, including
gradual learning. Current paper, in comparison, focuses more on the framing effects rather
than history dependence of choice and work without assumption of linear structure, since
here the fundamental objects of choice are deterministic alternatives rather than lotteries.

3Natenson works in continuous time, and our model lives in a finite world. Moreover, dynamic choice
is not in the focus of this paper, thus our results could have relatively mild connection to those in his
paper.
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2 Basic Model

In the basic model we assume that analyst observes probabilities of choosing alter-
natives from different menus. Let 𝑋 be a finite set of alternatives, and ℱ = {𝐴𝑖}𝑖∈ℐ be a
finite set of menus (choice field), enumerated by some index 𝑖 ∈ ℐ. We study situations
in which agent’s decisions to pick an alternative from a set may depend not only on the
offered menu, but also on other seemingly irrelevant details (i.e., framing). Therefore
we allow for repetitions in ℱ . That is, 𝐴𝑖 = 𝐴𝑗 for 𝑖 ̸= 𝑗 means that analyst observes
choice probabilities from the same menu, but, possibly, these choice problems appear to
be different for the decision maker because they have different framing. If it is the same
for both menus or if agents do not experience framing effects, we might expect choice
probabilities to be the same whenever 𝐴𝑖 = 𝐴𝑗.

Random choice {𝜌𝐴𝑖(𝑥)}𝑖∈ℐ is a family of probability distributions on 𝑋 with sup-
ports contained in 𝐴𝑖. That is,

𝜌 : ℐ ×𝑋 → [0, 1] ,
∑︁
𝑥∈𝐴𝑖

𝜌𝐴𝑖(𝑥) = 1 ∀𝑖 ∈ ℐ (2)

We can define a space of choice probabilities 𝒫 as a Cartesian product of the corresponding
probability simplexes:

𝒫 = ×
𝑖∈ℐ

{︃
(𝜌𝐴𝑖(𝑥))𝑥∈𝐴𝑖

∈ 𝑅
|𝐴𝑖|
+ |

∑︁
𝑥∈𝐴𝑖

𝜌𝐴𝑖(𝑥) = 1

}︃
(3)

and identify random choice 𝜌 with a point in this space. We use the usual Euclidean
metric in 𝒫 :

𝑑(𝜌, 𝜌) = ||𝜌− 𝜌|| =

√︃∑︁
𝑖∈𝐼

∑︁
𝑥∈𝐴𝑖

(𝜌𝐴𝑖(𝑥)− 𝜌𝐴𝑖(𝑥))2 (4)

Benchmark: Random Utility model

Random order (random utility) model serves as a benchmark and also plays an
important role throughout the paper. Following Barberá and Pattanaik (1986) and using
slightly different notations, define 𝐷 to be the set of all total orders4 on 𝑋 with generic
element 𝑑 ∈ 𝐷. Let 𝑤 : 𝐷 → [0, 1] such that

∑︀
𝑑∈𝐷

𝑤(𝑑) = 1 be a probability distribution

over total orders on 𝑋. We say that probability distribution 𝑤 over total orders on 𝑋
induces random choice {𝜌𝐴𝑖(𝑥)} if

∀𝑖 ∈ ℐ 𝜌𝐴𝑖(𝑥) =
∑︁
𝑑∈𝐷

𝑤(𝑑) · 1{𝑥𝑑𝑦 ∀𝑦 ∈ 𝐴𝑖} (5)

That is, probability of choosing some alternative 𝑥 from menu 𝐴 is equal to the probability
that this alternative is maximum in 𝐴 according to a random order. We say that random
choice data admits random order representation if there exists a probability distribution
𝑤 over total orders on 𝑋 such that it induces random choice data. From eq. (5) we

4Complete, transitive and antisymmetric binary relations.
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immediately get one necessary condition to have a random order representation: 𝜌𝐴𝑖(𝑥) =
𝜌𝐴𝑗(𝑥) for all 𝐴𝑖 = 𝐴𝑗.

Assume now that there are no repetitions of menus in ℱ . If ℱ includes all non-
empty subsets of 𝑋, Falmagne (1978)’s result provides a characterization of the set of
stochastic choices that have random order representation. Barberá and Pattanaik (1986)
formulate this result in terms of functions5 𝑞𝜌(𝑥,𝐴), defined recursively for 𝐴 ∈ 2𝑋 :

𝑞𝜌(𝑥,∅) = 𝜌𝑋(𝑥) ∀ 𝑥 ∈ 𝑋 (6)

𝑞𝜌(𝑥,𝐴) =

{︃
𝜌𝑋∖𝐴(𝑥)−

∑︀
𝐵(𝐴

𝑞𝜌(𝑥,𝐵) if 𝑥 ̸∈ 𝐴

0 if 𝑥 ∈ 𝐴

Stochastic choice 𝜌 admits a random order representation if and only if 𝑞𝜌(𝑥,𝐴) ≥ 0
∀𝐴 ∈ 2𝑋 , 𝑥 ∈ 𝑋. These conditions take a form of linear polynomials in 𝜌𝐴(𝑥), and
therefore they define a polygon 𝑅𝑂 = {𝜌 ∈ 𝒫 | 𝑞𝜌(𝑥,𝐴) ≥ 0 ∀ 𝑥,𝐴} in the space of
choice probabilities 𝒫 . If analyst observes only some menus, it is easy to conclude that
random choice admits random order representation if and only if {𝜌𝐴𝑖(𝑥)} belongs to the
projection of polygon 𝑅𝑂 on the subspace of observable choices.

A closely related concept is random utility representation, which operates with a
probability distribution defined on the appropriate sigma-algebra on the space of utility
functions 𝑢 : 𝑋 → 𝑅. We are going to use distributions of utility functions with finite
support, therefore we only need to require singletons to be measurable. Following Gul
and Pesendorfer (2006), we say that distribution of utility functions 𝜇 with finite support
is regular if ties occur with zero probability:

𝜇({𝑈 | 𝑈(𝑥) = 𝑈(𝑦) for some 𝑥 ̸= 𝑦}) = 0 (7)

Any regular distribution of utilities with finite support 𝜇 induces a distribution 𝑤 over
random orders on 𝑋:

𝑤𝜇(𝑑) = 𝜇{𝑈 | 𝑥𝑑𝑦 iff 𝑈(𝑥) ≥ 𝑈(𝑦) ∀𝑥, 𝑦 ∈ 𝑋} (8)

𝑤𝜇 is well-defined because 𝑈 has no ties on the support of 𝜇. We say that random choice
𝜌(.) admits a random utility representation if there is a regular 𝜇 such that the distribu-
tion of total orders 𝑤𝜇 induces 𝜌(.).

2.1 Model of Bayesian agents with uncertain preferences

We start an introduction of our model by describing choices of a single decision
maker and then we consider a population of them. As we will see, we can get the latter
as a special case of the former in this setup. Decision maker (DM) is uncertain about a
subjective state of the world, 𝑠 ∈ 𝑆, where 𝑆 is a finite state space, which we may interpret
as a space of moods, or “selves”, or states of mind, or any other source of preference
uncertainty. DM has a state-dependent utility function 𝑢 : 𝑆 ×𝑋 → 𝑅, which describes

5These functions are known as Block-Marschak polynomials. Block and Marschak (1960) paper shows
that these polynomials should be non-negative whenever data is generated by some random utility (ran-
dom order) model. This is one part of the Falmagne (1978)’s theorem.
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her preferences over alternatives in 𝑋 in each state of the world. We assume that DM is
an expected utility maximizer, and thus when she faces a choice problem, she picks an
alternative that gives her the highest utility given her beliefs (i.e. probability distribution
on the state space 𝑆) about her tastes. Let 𝜋(𝑠) be a prior probability distribution of DM
over 𝑆. Framing of a choice problem may help DM to think about her preferences and
resolve some of the uncertainty. Since framing is external with respect to the subjective
space of decision maker 𝑆, a correct way to model this uncertainty resolution is to associate
each frame with a Blackwell experiment 𝜎 defined on 𝑆. Formally, let Σ(𝑆) be the set
of Blackwell experiments on 𝑆 with finite signal space6 and ℎ : ℐ → Σ(𝑆) be a function
that assigns experiment ℎ(𝑖) to choice problem 𝐴𝑖; we call ℎ(.) a framing function.

Thus, we model the DM’s choice as follows. Firstly, some state 𝑠 of her mind is
realized, but she does not think about it before she faces a decision problem7. Then DM
observes a frame of a particular choice problem 𝐴𝑖 and receives signal 𝜏 𝑖 according to the
conditional distribution ℎ(𝑖)(𝑠, 𝜏). She forms a posterior belief 𝑝(𝑠 | 𝜏 𝑖) and evaluates
alternatives using expected utility E[𝑢𝑠(𝑥) | 𝜏 𝑖]. In principle, maximum of the expected
utility is not necessary unique, and we should introduce a tie-breaking rule to figure out
which alternative is picked eventually. However, the finite environment of the setup (finite
number of alternatives and menus) allows us to require that this situation does not occur.
Tie-breaking rule would give the model additional flexibility, but it is flexible enough.
Putting things all together, a Bayesian agent with uncertain preferences (BAUP) model
of choice consists of a tuple {𝑆, 𝑢, 𝜋, ℎ} and a tie-breaking rule. We say that BAUP model
is regular if ties occur with zero probability. Formally,

Definition 1. Regular BAUP model. Regular BAUP model defined for a set of
choice problems 𝑖 ∈ ℐ is a tuple {𝑆, 𝑢, 𝜋, ℎ} consisting of finite state space 𝑆, state-
dependent utility function 𝑢 : 𝑆 ×𝑋 → 𝑅, prior probability distribution 𝜋 on 𝑆, and
framing function ℎ : ℐ → Σ(𝑆) assigning Blackwell experiment on S with finite signal
space for each choice problem, such that

∀𝑖 ∈ ℐ ∀𝑥, 𝑦 ∈ 𝑋 Pr
(︀
E[𝑢𝑠(𝑥)− 𝑢𝑠(𝑦) | 𝜏 𝑖] = 0

)︀
= 0 (9)

where 𝜏 𝑖 is a random signal observed by DM according to Blackwell experiment ℎ(𝑖).

There are two sources of stochasticity build in the model. Firstly, there is a ran-
dom subjective state of the world 𝑠 with distribution 𝜋(𝑠). Secondly, there are random
signals with conditional distributions ℎ(𝑖)(𝑠, 𝜏) associated with framing of different choice
problems 𝐴𝑖 ∈ ℱ . We say that BAUP model {𝑆, 𝑢, 𝜋, ℎ} induces random choice 𝜌 if

6The restriction that signal space is finite is for the technical ease. I am going to relax it in the further
work. Infinite signal space requires consideration of measurability of expected utilities appearing in our
calculations. Observe that proofs involving construction of some Bayesian model (Theorem 2, Theorem
3, if part of Theorem 1) continue to be valid in the case when signal space is allowed to be infinite
because we can use the same Blackwell experiments with finite signal space. The only if part of Theorem
1 requires some consideration, and it is discussed in the Appendix. Other results rely on the fact that
expected utility is a convex combination of state-dependent utilities weighted by a posterior distribution
and are not sensitive to the finiteness of a signal space.

7Alternatively, she could get some signal regarding her tastes. This case is discussed in the population
interpretation of the random choice.
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∀𝑥 ∈ 𝑋 ∀𝑖 ∈ ℐ 𝜌𝐴𝑖(𝑥) = Pr
{︀

E[𝑢𝑠(𝑥) | 𝜏 𝑖] ≥ E[𝑢𝑠(𝑦) | 𝜏 𝑖] ∀𝑦 ∈ 𝐴𝑖
}︀

(10)

where 𝜏 𝑖 is a random signal observed by DM according to Blackwell experiment ℎ(𝑖), and

E
[︀
𝑢𝑠(𝑥) | 𝜏 𝑖

]︀
=
∑︁
𝑠∈𝑆

𝑝(𝑠 | 𝜏 𝑖) · 𝑢𝑠(𝑥) =
∑︁
𝑠∈𝑆

⎛⎝ 𝜋(𝑠) · ℎ(𝑖)(𝑠, 𝜏 𝑖)∑︀
𝑠′∈𝑆

𝜋(𝑠′) · ℎ(𝑖)(𝑠′, 𝜏 𝑖)
· 𝑢𝑠(𝑥)

⎞⎠
We say that random choice 𝜌 admits a regular BAUP representation if there exists a sub-
jective state space 𝑆, state-dependent utility function 𝑢𝑠(𝑥), prior probability distribution
𝜋(𝑠), and framing function ℎ : ℐ → Σ(𝑆) mapping indexes of choice problems to the
Blackwell experiments on 𝑆 with finite signal space, such that BAUP model {𝑆, 𝑢, 𝜋, ℎ}
is regular and it induces random choice 𝜌.

2.2 A characterization theorem for BAUP model

The goal of this section is to characterize random choice that admits regular BAUP
representation analogously to the Falmagne (1978)’s characterization of random choice
consistent with some random utility model. For this purpose we firstly define a binary
relation ⪰̂𝜌 on 𝑋 induced by random choice.

Definition 2. Revealed Dominance relation. Given random choice {𝜌𝐴𝑖(𝑥)}𝑖∈ℐ ,
we define a revealed by this choice dominance binary relation ⪰̂𝜌 by

𝑥 ⪰̂𝜌 𝑦 iff 𝑥 ̸= 𝑦 and [∃𝑖 ∈ ℐ : 𝑥, 𝑦 ∈ 𝐴𝑖 and 𝜌
𝐴𝑖(𝑥) = 1] (11)

Choice behavior, consistent with BAUP model, is characterized by the following axiom.

Revealed Dominance Acyclicity Axiom. Revealed Dominance relation ⪰̂𝜌 is acyclic
8.

Theorem 1. Random choice {𝜌𝐴𝑖(𝑥)}𝑖∈ℐ has a regular BAUP representation if and
only if it satisfies Revealed Dominance Acyclicity Axiom.

Proof.
Only if part. Suppose 𝜌 has a BAUP representation. Consider some pair of alternatives
𝑥 ̸= 𝑦 such that 𝑥 ⪰̂𝜌 𝑦. Then there is 𝑖 ∈ ℐ such that 𝜌𝐴𝑖(𝑥) = 1 and 𝑦 ∈ 𝐴𝑖. We thus
have

Pr{𝜏 𝑖 | E[𝑢𝑠(𝑥) | 𝜏 𝑖] > E[𝑢𝑠(𝑦) | 𝜏 𝑖]} = 1 (12)

therefore, using the Law of Total Expectations,

E[𝑢𝑠(𝑥)− 𝑢𝑠(𝑦)] = E[ E[𝑢𝑠(𝑥)− 𝑢𝑠(𝑦) | 𝜏 𝑖] ] > 0 (13)

8Binary relation ⪰ is acyclic if 𝑥1 ⪰ ... ⪰ 𝑥𝑛 implies 𝑥𝑛 � 𝑥1.
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Hence,
𝑥 ⪰̂𝜌 𝑦 ⇒ E[𝑢𝑠(𝑥)] > E[𝑢𝑠(𝑦)] (14)

If ⪰̂𝜌 has a cycle 𝑥1 ⪰̂𝜌 ... ⪰̂𝜌 𝑥𝑛 ⪰̂𝜌 𝑥1, then E[𝑢𝑠(𝑥1)] > ... > E[𝑢𝑠(𝑥𝑛)] > E[𝑢𝑠(𝑥1)], con-
tradiction. We conclude that {𝜌𝐴𝑖(𝑥)}𝑖∈ℐ satisfies Revealed Dominance Acyclicity Axiom.

If part. Consider {𝜌𝐴𝑖(𝑥)}𝑖∈ℐ such that ⪰̂𝜌 has no cycles. We proceed by construct-
ing a BAUP model {𝑆, 𝑢, 𝜋, ℎ} that induces 𝜌. Observe that ⪰̂𝜌 is a subset of some total
order9 ⪰*. WLOG enumerate elements of 𝑋 by 𝑥1, 𝑥2, ..., 𝑥𝑛 such that 𝑥𝑛 ≻* 𝑥𝑛−1 ≻*

... ≻* 𝑥2 ≻* 𝑥1. Denote

ℐ𝑑 = {𝑖 ∈ ℐ | ∃𝑥 : 𝜌𝐴𝑖(𝑥) = 1} ; ℐ𝑛𝑑 = ℐ∖ℐ𝑑 (15)

and WLOG assume that menus are enumerated such that ℐ𝑛𝑑 = {1, ..., 𝐾}, ℐ𝑑 = {𝐾 +
1, ..., | ℐ |}. Consider state space

𝑆 = {𝑠𝑚1...𝑚𝐾
}𝑚𝑖...𝑚𝐾

(16)

where 𝐾 =| ℐ𝑛𝑑 | indexes are such that 𝑚𝑗 ∈ {𝑚 | 𝜌𝑗(𝑥𝑚) > 0}. That is, (𝑚1, ...,𝑚𝐾)
corresponds to 𝑥𝑚1 being chosen from 𝐴1, 𝑥

𝑚2 being chosen from 𝐴2, etc. Note that 𝑗 goes
through all choice problems for which at least two alternatives are chosen with positive
probabilities and 𝑚𝑗 goes through alternatives that are chosen from 𝐴𝑗 with positive
probabilities. Let 𝑚𝑗(𝑠) be the 𝑗-th index of state 𝑠:

𝑠 ≡ 𝑠𝑚1(𝑠)...𝑚𝑗(𝑠)...𝑚𝐾(𝑠) (17)

Denote

𝑣𝑚𝑖 (𝑥) =

⎧⎨⎩ 0 if 𝜌𝐴𝑖(𝑥) = 0

2 | 𝑋 | ·
[︂

1

𝜌𝐴𝑖(𝑥)
1{𝑥 = 𝑥𝑚} − 1

1− 𝜌𝐴𝑖(𝑥)
1{𝑥 ̸= 𝑥𝑚}

]︂
if 𝜌𝐴𝑖(𝑥) > 0

(18)

and consider the following state-dependent utility function:

𝑢𝑠(𝑥
𝑞) = 𝑞 +

𝐾∑︁
𝑖=1

𝑣
𝑚𝑖(𝑠)
𝑖 (𝑥𝑞) (19)

Define prior probability distribution

𝜋(𝑠𝑚1...𝑚𝐾
) =

𝐾∏︁
𝑖=1

𝜌𝐴𝑖(𝑥𝑚𝑖) (20)

9We can show this by induction in the number of alternatives. Firstly, set 𝑥 ⪰* 𝑥 for all 𝑥 ∈ 𝑋.
Induction base: 𝑋 = {𝑥1, 𝑥2}. In case if 𝑥 ⪰̂𝜌 𝑦 for some 𝑥, 𝑦 ∈ 𝑋, define 𝑥 ⪰* 𝑦. No cycles condition

for ⪰̂𝜌 guarantees that 𝑦 �* 𝑥. In the other case, define 𝑥2 ⪰* 𝑥1. Induction base: find an alternative 𝑧

such that 𝑥 �̂
𝜌
𝑧 for all 𝑥 ∈ 𝑋∖{𝑧} This alternative exists, since otherwise each alternative is revealed to

be dominated by another, and we have a cycle in ⪰̂𝜌 (recall that 𝑋 is finite). Define 𝑧 ⪰* 𝑥 ∀𝑥 ∈ 𝑋 and

apply induction hypothesis to 𝑋∖{𝑧}. It is easy to see that ⪰* is a total order, which includes ⪰̂𝜌.
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and consider the following messages:

𝜏 𝑗𝑚 = “ 𝑐(𝐴𝑗) = 𝑥𝑚 ” (21)

and a “default” message 𝜏0. Let 𝜏 = (𝜏 1, ..., 𝜏ℐ) be a vector of messages corresponding to
framing of choice problems 𝐴1, ..., 𝐴ℐ . Choose framing function ℎ such that

(ℎ(1), ..., ℎ(ℐ))(𝑠𝑚1...𝑚𝐾
, 𝜏 ) ≡ (22)

≡ Pr(𝜏 | 𝑠𝑚1...𝑚𝐾
) =

{︂
1 if 𝜏 𝑗 = 𝜏 𝑗𝑚𝑗

∀𝑗 ∈ ℐ𝑛𝑑 and 𝜏 𝑗 = 𝜏0 ∀𝑗 ∈ ℐ𝑑
0 otherwise

In other words, when DM faces choice problem 𝐴𝑗 with 𝑗 ∈ ℐ𝑛𝑑 at state 𝑠...𝑚𝑗 ..., she re-
ceives signal “𝑐(𝐴𝑗) = 𝑥𝑚𝑗” with probability one. And if she faces 𝐴𝑗 with 𝑗 ∈ ℐ𝑑 at any
state of the world, she receives signal 𝜏0 with probability one.

Let’s show that {𝑆, 𝑢, 𝜋, ℎ} represents 𝜌. Suppose that subjective state is 𝑠 = 𝑠𝑟1...𝑟𝐾 .
When DM faces menu 𝐴𝑗 with 𝑗 ∈ ℐ𝑛𝑑, she receives signal 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗 with probability one
and forms a posterior belief

𝑝(𝑠𝑚1...𝑚𝐾
| 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗) = 1{𝑚𝑗 = 𝑟𝑗} ·

∏︁
𝑖∈ℐ𝑛𝑑∖{𝑗}

𝜌𝐴𝑖(𝑥𝑚𝑖) (23)

If she faces menu 𝐴𝑗 with 𝑗 ∈ ℐ𝑑, her posterior belief remains equal to her prior 𝜋(𝑠).
Suppose 𝑗 ∈ ℐ𝑛𝑑. Then

E[𝑢𝑠 | 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗 ] = 𝑞 +
∑︁
𝑖∈ℐ𝑛𝑑

E[𝑣𝑚𝑖(𝑠)
𝑖 (𝑥𝑞) | 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗 ] (24)

Consider 𝑖 ̸= 𝑗 and 𝜌𝐴𝑖(𝑥𝑞) > 0, then

E[𝑣𝑚𝑖(𝑠)
𝑖 (𝑥𝑞) | 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗 ] =

∑︁
𝑠: 𝑚𝑗(𝑠)=𝑟𝑗

⎛⎝ ∏︁
𝑘∈ℐ𝑛𝑑∖{𝑗}

𝜌𝐴𝑘(𝑥𝑚𝑘(𝑠)) × (25)

× 2 | 𝑋 | ·
[︂

1

𝜌𝐴𝑖(𝑥𝑞)
1{𝑞 = 𝑚𝑖(𝑠)} −

1

1− 𝜌𝐴𝑖(𝑥𝑞)
1{𝑞 ̸= 𝑚𝑖(𝑠)}

]︂)︂
=

= 2 | 𝑋 |
∑︁

𝑠: 𝑚𝑗(𝑠)=𝑟𝑗 , 𝑚𝑖(𝑠)=𝑤

⎛⎝ ∏︁
𝑘∈ℐ𝑛𝑑∖{𝑗,𝑖}

𝜌𝐴𝑘(𝑥𝑚𝑘(𝑠)) ×

×

⎡⎣ ∑︁
𝑤: 𝜌𝐴𝑖 (𝑥𝑤)>0

𝜌𝐴𝑖(𝑥𝑤)

[︂
1

𝜌𝐴𝑖(𝑥𝑞)
1{𝑞 = 𝑤} − 1

1− 𝜌𝐴𝑖(𝑥𝑞)
1{𝑞 ̸= 𝑤}

]︂⎤⎦
⏟  ⏞  

= 0

⎞⎟⎟⎟⎟⎠ = 0
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Analogous calculation shows that if 𝜌𝐴𝑗(𝑥𝑞) > 0, then

E[𝑣𝑚𝑗(𝑠)
𝑗 (𝑥𝑞) | 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗 ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 2 | 𝑋 |
1− 𝜌𝐴𝑗(𝑥𝑞)

if 𝑞 ̸= 𝑟𝑗

2 | 𝑋 |
𝜌𝐴𝑗(𝑥𝑞)

if 𝑞 = 𝑟𝑗

(26)

Therefore, for 𝑗 ∈ ℐ𝑛𝑑 we have

E[𝑢𝑠(𝑥
𝑞) | 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗 ] = 𝑞 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝜌𝐴𝑗(𝑥𝑞) = 0

− 2 | 𝑋 |
1− 𝜌𝐴𝑗(𝑥𝑞)

if 𝜌𝐴𝑗(𝑥𝑞) > 0 and 𝑞 ̸= 𝑚

2 | 𝑋 |
𝜌𝐴𝑗(𝑥𝑞)

if 𝑞 = 𝑟𝑗

(27)

Note that
2 | 𝑋 |
𝜌𝐴𝑗(𝑥𝑞)

> 𝑞′, ∀𝑞′ ∈ {1, ..., | 𝑋 |}. Thus

Argmax
𝑥∈𝐴𝑗

{E[𝑢𝑠(𝑥) | 𝜏 𝑗 = 𝜏 𝑗𝑟𝑗 ]} = {𝑥𝑟𝑗} (28)

Using these results, we find that

Pr
{︀

E[𝑢𝑠(𝑥
𝑞) | 𝜏 𝑗] ≥ E[𝑢𝑠(𝑦) | 𝜏 𝑗] ∀𝑦 ∈ 𝐴𝑗

}︀
= (29)

= Pr
{︀
𝜏 𝑗 = 𝜏 𝑗𝑞

}︀
= 𝜋 ({𝑠 ∈ 𝑆 | 𝑚𝑗(𝑠) = 𝑞}) = 𝜌𝐴𝑗(𝑥𝑞)

which means that {𝑆, 𝑢, 𝜋, ℎ} induces random choice 𝜌𝐴𝑗(𝑥) for menus 𝐴𝑗 with 𝑗 ∈ ℐ𝑛𝑑.

Now consider 𝑗 ∈ ℐ𝑑. When DM faces 𝐴𝑗, she receives uninformative signal 𝜏 0 and
therefore

E[𝑢(𝑥𝑞) | 𝜏 𝑗 = 𝜏0] = E[𝑢(𝑥𝑞)] = 𝑞 (30)

Thus
Argmax
𝑥∈𝐴𝑗

{E[𝑢𝑠(𝑥) | 𝜏 𝑗 = 𝜏0]} = {𝑥𝑀(𝑗)} , 𝑀(𝑗) = argmax
𝑥𝑚∈𝐴𝑗

(𝑚) (31)

Hence,
Pr
{︀

E[𝑢𝑠(𝑥
𝑞) | 𝜏 𝑗] ≥ E[𝑢𝑠(𝑦) | 𝜏 𝑗] ∀𝑦 ∈ 𝐴𝑗

}︀
= (32)

= Pr
{︀
𝜏 𝑗 = 𝜏0

}︀
· 1{𝑞 =𝑀(𝑗)} = 1{𝑞 =𝑀(𝑗)}

Note that 𝐴𝑗 is such that 𝜌𝐴𝑗(𝑥𝑤) = 1 for some 𝑥𝑤 ∈ 𝐴𝑗. Assume that 𝑤 ̸=𝑀(𝑗). Then

𝑥𝑤 ⪰̂𝜌 𝑥
𝑀(𝑗) ⇒ 𝑥𝑤 ⪰* 𝑥𝑀(𝑗) ⇒ 𝑤 > 𝑀(𝑗) (33)

contradicting the definition of 𝑀(𝑗). Therefore, 𝜌𝐴𝑗(𝑥𝑀(𝑗)) = 1, and thus {𝑆, 𝑢, 𝜋, ℎ}
induces random choice 𝜌𝐴𝑗(𝑥) for menus 𝐴𝑗 with 𝑗 ∈ ℐ𝑑 as well. The if part is proven.
Theorem 1 is proven.
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Each model of choice 𝑀 has a corresponding subspace 𝒫(𝑀) ⊆ 𝒫 of choice proba-
bilities that could be induced by this model:

𝒫(𝑀) = {𝜌 ∈ 𝒫 | 𝜌 could be induced by model M} (34)

If 𝑀 = 𝑀𝑅𝑈𝑀 is a random utility model, then 𝒫(𝑀𝑅𝑈𝑀) = 𝑅𝑂 is a polygon in the
space of choice probabilities 𝒫 such that at each point of this polygon all Block-Marschak
polynomials are non-negative. Clearly, random utility is a special case of BAUP model
such that the subjective state is fully revealed to DM when she makes a decision. This is
summarized in Proposition 1.

Proposition 1. Let BAUP model 𝑀perfect be such that ℎ(𝑖) = 𝜎perfect ∀𝑖 ∈ ℐ, where
𝜎perfect(𝑠, 𝑠

′) = 1{𝑠 = 𝑠′} ∀𝑠, 𝑠′ ∈ 𝑆; in other words, DM learns her subjective state of
mind perfectly. Then 𝑀perfect could induce the same set of random choices as random
utility model:

𝒫(𝑀perfect) = 𝑅𝑂 (35)

The proof is simple and omitted.

If 𝑀 = 𝑀𝐵𝐴𝑈𝑃 is a BAUP model, then, according to Theorem 1, 𝒫(𝑀𝐵𝐴𝑈𝑃 ) is
a set of choice probabilities such that ⪰̂𝜌 is acyclic. One might argue that it is a very
light requirement. Indeed, BAUP model is incompatible with random choice if there are
𝑥1, ..., 𝑥𝑛 ∈ 𝑋 and 𝑖1, ..., 𝑖𝑛 ∈ ℐ such that 𝑥𝑘, 𝑥𝑘+1 mod(𝑛) ∈ 𝐴𝑘 and 𝜌𝐴𝑘(𝑥𝑘) = 1. Suppose
we have a finite data set of choice decisions. Then any test of hypothesis 𝐻0 : 𝜌

𝐴(𝑥) < 1
versus 𝐻1 : 𝜌𝐴(𝑥) = 1 has a trivial power. This is a general observation: since proba-
bilities are estimated with errors, there is no good way to reject one model in favor of
another if the corresponding sets of choice probabilities induced by two models have the
same closures. Let’s formalize this concept.

Definition 3. Almost indistinguishable models. We say that two models of random
choice, 𝑀1 and 𝑀2, are almost indistinguishable if 𝑐𝑙(𝒫(𝑀1)) = 𝑐𝑙(𝒫(𝑀2)).

10

So far we considered a situation in which analyst had no exogenously given infor-
mation about frames of choice problems. It is natural to say that model 𝑀 = 𝑀𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

exhibits arbitrary framing effects in this setup if 𝒫(𝑀𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦) = 𝒫 , that is, we can see
any random choice. We may conclude from Theorem 1 that BAUP model is almost in-
distinguishable from a model of arbitrary framing effects. It is a negative (“everything
goes”) result from the point of view of falsification of the model. The rest of the paper
is devoted to finding ways to discipline BAUP model by putting restrictions on its com-
ponents (state space, utilities and framing function) and considering richer choice data
such that BAUP model becomes distinguishable from a model of arbitrary framing effects.
Before we come to the examples of BAUP models that give moderate framing effects, we
consider a couple of “everything goes” theorems for the cases when we put restrictions on
the size of state space and on the framing function correspondingly; the latter model in-

10Where closure is taken with respect to topology on 𝒫 induced by Euclidean metric (eq. 4).
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cludes dynamic random choice as a special case. Before that we show that it is enough to
have subjective state space with only two states (| 𝑆 |= 2) for the BAUP model to justify
any non-degenerate random choice (and thus this model is indistinguishable with model
of arbitrary framing effects), provided that analyst has no information about frames. But
firstly we discuss how to apply BAUP model to a population of decision makers who are
uncertain about their own preferences.

2.3 Population interpretation of BAUP model

Population interpretation of random choice is important for the BAUP model. In-
deed, suppose that analyst observes sequential choices made by the same person from
menus 𝐴1, 𝐴2, 𝐴3. When DM chooses an alternative from 𝐴1, she observes signal realiza-
tion 𝜏 1 associated with framing ℎ(1). When she faces 𝐴2, she observes signal realization
𝜏 2 associated with framing ℎ(2), but she also knows 𝜏 1 at the time when she makes her
choice from 𝐴2. Similarly the analyst sees choice from menu 𝐴3 under the condition that
DM has information given by realizations of all 3 signals 𝜏 1, 𝜏 2, 𝜏 3. The problem is that
analyst does not see choice from menu 𝐴2 with framing given by ℎ(2) and choice from 𝐴3

with framing given by ℎ(3). Therefore only the very first choice of a person is made under
the actual framing of the BAUP model, and framings associated with the other choice
problems are contaminated by the framings of choice problems that DM faced before.

A good way to avoid this complication might be to have a large group of decision
makers and give each of them one choice problem. This requires us to consider random
choice exhibited by a population of decision makers. The simplest way to model this is
to say that we have some distribution 𝜈(𝜃) defined on the space of types 𝜃 ∈ Θ, where
we assume Θ to be finite. The observed random choice is then a convex combination of
choice frequencies for each type 𝜃 in the population:

𝜌𝐴𝑖(𝑥) =
∑︁
𝜃∈Θ

𝜈(𝜃) · 𝜌𝐴𝑖
𝜃 (𝑥) (36)

where 𝜌𝐴𝑖
𝜃 (𝑥) is random choice that could be exhibited by individual decision maker of

type 𝜃. If 𝒫(𝑀) is the set of choice probabilities that could be induced by model 𝑀
describing choices of an individual agent, then

𝒫population(𝑀) = conv (𝒫(𝑀)) (37)

is the set of choice probabilities that could be induced by choices of population of decision
makers acting according to model 𝑀 , and it is equal to a convex closure of 𝒫(𝑀). We
can see that 𝒫(𝑀𝐵𝐴𝑈𝑃 ) is a convex set (⪰̂𝜌 being acyclic is preserved under convex com-
binations), therefore Theorem 1 works well for the population interpretation of random
choice as well.

BAUP model provides a good way to incorporate population interpretation in itself.
Indeed, consider a BAUP model in which DM receives some signal 𝜏0 regarding her tastes
according to the conditional distribution 𝜎0(𝑠, 𝜏) before she faces any choice problem. We
can say that there are types 𝜃 ∈ Θ of decision makers who receive signals “your type
is 𝜃”. Different types thus have different information before facing choice problems, and
decision makers of the same type have identical information. There is one caveat though:
signal 𝜏0 may provide some hidden information that may be used in combination with a
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signal received after observing framing of a choice problem11.

2.4 Representation with two subjective states

Suppose DM is uncertain about some aspect of her personality: whether she is
brave or not, is she depressed or in the good mood, does she like specific sea food or
not, what is her attitude toward some policy. Depending on the circumstances she may
look at this aspect from various angles and to a different extend. Thus her decision to
undertake a risky trip, choose a way to spend a weekend, go to a specific restaurant or
vote for a politician may depend on the seemingly irrelevant details framing the corre-
sponding choice problem. We can use a BAUP model with two states to model her choice:
𝑆 = {𝑏𝑟𝑎𝑣𝑒, 𝑢𝑠𝑢𝑎𝑙}, 𝑆 = {𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑, 𝑔𝑜𝑜𝑑}, 𝑆 = {𝑙𝑖𝑘𝑒 𝑜𝑐𝑡𝑜𝑝𝑢𝑠, 𝑑𝑜𝑛′𝑡 𝑙𝑖𝑘𝑒 𝑜𝑐𝑡𝑜𝑝𝑢𝑠},
𝑆 = {𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒, 𝑟𝑒𝑗𝑒𝑐𝑡 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒}. Unfortunately, this restric-
tion of the model does not allow by itself to narrow the set of possible random choice
frequencies, which is proven in Theorem 2.

Theorem 2. Any non-degenerate random choice 𝜌 (that is, 𝜌𝐴𝑖(𝑥) > 0 ∀𝑥 ∈ 𝐴𝑖 ∀𝑖 ∈ ℐ)
has a regular BAUP representation {𝑆, 𝑢, 𝜋, ℎ} with state space consisted of two states
𝑆 = {𝑠1, 𝑠2}. Moreover, this representation exists for any non-degenerate prior 𝜈 ≡
𝜋(𝑠2) ∈ (0, 1).
Corollary. Regular BAUP model with a state space of size two (call it 𝑀2) is almost
indistinguishable from arbitrary framing effects model.

Proof. Since choices from singletons are trivial (𝜌{𝑥}(𝑥) = 1) and they are induced by any
BAUP model (any singleton set {𝑥} has maximizer 𝑥), we may assume without loss of
generality that each menu consists of at least two elements (| 𝐴𝑖 |≥ 2 ∀𝑖 ∈ ℐ).

Step 1. Enumerate arbitrary elements of 𝑋 by 𝑥1, ..., 𝑥𝑛. Denote 𝑈𝜇(𝑥) ≡ 𝐸𝜇[𝑢𝑠(𝑥)] =
(1 − 𝜇) · 𝑢𝑠1(𝑥) + 𝜇 · 𝑢𝑠2(𝑥). Then for any 0 < 𝜇1 < ... < 𝜇𝑛−1 < 1 the following
state-dependent utility function

𝑢1(𝑥
𝑘) = −

𝑘−1∑︁
𝑖=1

(︂
𝜇𝑖

1− 𝜇𝑖

)︂
𝑢2(𝑥

𝑘) = 𝑘 (38)

is such that:

1. 𝜇 ∈ [0, 𝜇1) ⇒ 𝑈𝜇(𝑥
𝑘) > 𝑈𝜇(𝑥

𝑙) ∀𝑙 > 𝑘

2. 𝜇 ∈ (𝜇𝑘−1, 𝜇𝑘) ⇒ {𝑥𝑘} = Argmax
𝑥∈𝑋

𝑈𝜇(𝑥)

3. 𝜇 ∈ (𝜇𝑛−1, 1] ⇒ 𝑈𝜇(𝑥
𝑘) < 𝑈𝜇(𝑥

𝑙) ∀𝑙 > 𝑘

11Nevertheless, any model with a prior signal coming from Blackwell experiment 𝜎0 and framing func-
tion ℎ(𝑖) is outcome equivalent to the model where prior signal is uninformative and framing function
maps to a compound Blackwell experiment ℎ(𝑖) = ℎ(𝑖) ∪ 𝜎0. For the model with a single decision maker
this means that the assumption that DM does not receive any signals regarding her state of mind before
facing a choice problem is without loss of generality.
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0 μ1 μ2 μ3 μ4 
μ 1 ν 

𝑢2(x1)  

𝑢2(x2)  

𝑢2(x3)  

𝑢2(x4)  

𝑢2(x5)  

𝑢1(x1)  

𝑢1(x2)  

𝑢1(x3)  

𝑢1(x4)  

𝑢1(x5)  

Figure 1: State-dependent utility function used in the proof of Theorem 2 (example with
five alternatives). Horizontal Axis is the probability of state 𝑠2. Vertical Axis is the
expected utility of an alternative.

The corresponding calculation is given in the Appendix.

Step 2. Let 𝑋 = {𝑥1, ..., 𝑥𝑛} and

𝜖 = min

{︂
1

𝑛
·min
𝑖∈ℐ

min
𝑥∈𝐴𝑖

𝜌𝐴𝑖(𝑥) ,
1

𝜈
− 1

}︂
(39)

Note that 𝜖 > 0 under the conditions of Theorem 2. For each 𝑖 ∈ ℐ denote

𝒥𝑖 = {𝑗 ∈ {1, ..., 𝑛} | 𝑥𝑗 ∈ 𝐴𝑖} 𝑚𝑖 = min(𝒥𝑖) 𝑀𝑖 = max(𝒥𝑖) (40)

and

𝜇𝑘 = 𝜈 · (1 + 𝑘

2𝑛
𝜖) ∈ (𝜈, 1) (41)

for 𝑘 ∈ {1, ..., 𝑛− 1}. Next, for each 𝑖 ∈ ℐ and 𝑘 ∈ 𝒥𝑖 define

𝜈𝑘𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜈 · (1 +

𝑘 − 1
2

2𝑛
𝜖) if 𝑘 ∈ 𝒥𝑖∖{𝑚𝑖}

𝜈 ·

(︃
1− 𝜖

𝜌𝐴𝑖(𝑥𝑚𝑖)
·

∑︀
𝑘∈𝒥𝑖∖{𝑚𝑖}

𝑘 − 1
2

2𝑛
· 𝜌𝐴𝑖(𝑥𝑘)

)︃
if 𝑘 = 𝑚𝑖

(42)

Then Blackwell experiments 𝜎𝑖, having the following conditional distributions, are well-
defined:

𝜎𝑖(𝑠1, 𝜏
𝑖
𝑘) = 𝜌𝐴𝑖(𝑥𝑘)

1− 𝜈𝑘𝑖
1− 𝜈

𝜎𝑖(𝑠2, 𝜏
𝑖
𝑘) = 𝜌𝐴𝑖(𝑥𝑘)

𝜈𝑘𝑖
𝜈

for 𝑘 ∈ 𝒥𝑖 (43)
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The proof is given in the Appendix.

Step 3. Let’s show that BAUP model {{𝑠1, 𝑠2}, 𝑢𝑠(𝑥), 𝜈, ℎ}, where 𝑢𝑠(𝑥) is a state-
dependent utility function defined at step 1 for 𝜇𝑘 given by eq. (41) and ℎ is a framing
function such that ℎ(𝑖) = 𝜎𝑖, induces random choice {𝜌𝐴𝑖(𝑥)}𝑖∈ℐ . We have:

𝑝(𝑠2 | 𝜏 𝑖𝑘) =
𝜎𝑖(𝑠2, 𝜏

𝑖
𝑘)𝜈

𝜎𝑖(𝑠2, 𝜏 𝑖𝑘)𝜈 + 𝜎𝑖(𝑠1, 𝜏 𝑖𝑘)(1− 𝜈)
= 𝜈𝑘𝑖 (44)

Consider 𝑘 ∈ 𝒥𝑖∖{𝑚𝑖, 𝑛}. Therefore, 1 < 𝑘 < 𝑛 and 𝜇𝑘−1 < 𝜈𝑘𝑖 < 𝜇𝑘. Statement 2 of step
1 then gives us

Argmax
𝑥∈𝐴𝑖

E[𝑢𝑠(𝑥) | 𝜏 𝑖 = 𝜏 𝑖𝑘] = Argmax
𝑥∈𝐴𝑖

𝑈𝜈𝑖𝑘(𝑥) = {𝑥𝑘} (45)

If 𝑘 = 𝑚𝑖, then
12 0 < 𝜈𝑚𝑖

𝑖 < 𝜈 < 𝜇1, and statement 1 of step 1 gives us

Argmax
𝑥∈𝐴𝑖

E[𝑢𝑠(𝑥) | 𝜏 𝑖 = 𝜏 𝑖𝑚𝑖
] = Argmax

𝑥∈𝐴𝑖

𝑈𝜈𝑖𝑚𝑖
(𝑥) = {𝑥𝑚𝑖}

If 𝑘 = 𝑛 ∈ 𝒥𝑖, then 𝜇𝑛−1 < 𝜈𝑛𝑖 < 1, and statement 3 of step 1 gives us

Argmax
𝑥∈𝐴𝑖

E[𝑢𝑠(𝑥) | 𝜏 𝑖 = 𝜏 𝑖𝑛] = Argmax
𝑥∈𝐴𝑖

𝑈𝜈𝑖𝑛(𝑥) = {𝑥𝑀𝑖} = {𝑥𝑛}

Finally,
Pr(𝜏 𝑖 = 𝜏 𝑖𝑘) = 𝜎𝑖(𝑠1, 𝜏

𝑖
𝑘)(1− 𝜈) + 𝜎𝑖(𝑠2, 𝜏

𝑖
𝑘)𝜈 = 𝜌𝐴𝑖(𝑥𝑘) (46)

Putting things all together, we get

Pr
{︀

E[𝑢𝑠(𝑥
𝑘) | 𝜏 𝑖] ≥ E[𝑢𝑠(𝑦) | 𝜏 𝑖] ∀𝑦 ∈ 𝐴𝑖

}︀
= Pr

(︀
𝜏 𝑖 = 𝜏 𝑖𝑘

)︀
= 𝜌𝐴𝑖(𝑥𝑘) (47)

Note also that ties in 𝑈𝜈(𝑥) do not occur for posteriors 𝜈 = 𝜈𝑘𝑖 appearing after signal re-
alizations 𝜏 𝑖𝑘. Therefore, BAUP model {{𝑠1, 𝑠2}, 𝑢, 𝜈, ℎ} is regular and it induces random
choice 𝜌. Theorem 2 is proven.

The Corollary follows from the fact that the set of non-degenerate random choices 𝒫𝑛𝑑
is equal to the interior of the space of choice probabilities 𝒫 . Theorem 2 says that
𝒫𝑛𝑑 ⊆ 𝒫(𝑀2). Therefore

𝒫 = 𝑐𝑙(𝒫𝑛𝑑) ⊆ 𝑐𝑙(𝒫(𝑀2)) ⊆ 𝒫 ⇒ 𝑐𝑙(𝒫(𝑀2)) = 𝒫 (48)

We conclude that𝑀2 is almost indistinguishable from a model of arbitrary framing effects.
Corollary is proven.

3 Random choice with data on frames

In the basic model we assumed that analyst had no exogenous information about
the framing of different choice problems. In a way, we determined frames endogenously

12See proof of step 2 in the Appendix.
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as a part of model in the BAUP representations, which we considered in the basic setup.
Since we did not impose any restrictions on these frames, we used this freedom to set
up idiosyncratic frame for each choice problem. It was one of the drivers of “everything
is possible” results that we have got so far. In this section we consider a situation in
which analyst observes not only the distribution of choices from different menus, but also
framings of the corresponding choice problems. We borrow some examples of how analyst
can define a frame from Salant and Rubinstein (2008)13:

(i) Frame is a default alternative specified for a choice problem.
(ii) Frame is an order in which alternatives are presented to the decision maker.
(iii) Frame is an advertisement14.
(iv) Frame is a maximum amount of time that DM can spend on a choice problem.

In principle, nothing prevents DM from exhibiting framing effects that are not
under the control of analyst; this would return us to the basic scenario. In this section we
assume that analyst has full information about frames. Therefore we expect that choice
frequencies from menus associated with the same frame should be rationalizable by some
random utility model. For the ease of analysis we also assume that analyst observes
choices from all possible menus in each frame15.

To formalize these concepts, let’s follow Salant and Rubinstein (2008) and define an
extended choice problem (𝐴, 𝛽) to be a pair consisting of menu 𝐴 and frame 𝛽 ∈ ℬ, where
ℬ is a finite set of frames. Next, define extended random choice16 {𝜌𝐴𝛽 (𝑥)}𝛽∈ℬ, ∅̸=𝐴⊆𝑋 to be
a family of probability distributions on 𝑋 indexed by frame 𝛽 ∈ ℬ and menu 𝐴 ∈ 2𝑋∖{∅}
with supports contained in 𝐴:

𝜌 :
(︀
2𝑋∖{∅}

)︀
× ℬ ×𝑋 → [0, 1] ,

∑︁
𝑥∈𝐴

𝜌𝐴𝛽 (𝑥) = 1 ∀𝛽 ∈ ℬ, ∅ ̸= 𝐴 ⊆ 𝑋 (49)

Frame Consistency Axiom. We say that an extended random choice {𝜌𝐴𝛽 (𝑥)}𝛽∈ℬ, ∅̸=𝐴⊆𝑋
is frame consistent if for any fixed 𝛽 ∈ ℬ random choice {𝜌𝐴𝛽 (𝑥)}∅̸=𝐴⊆𝑋 admits a random
utility representation.

As we have argued before, we consider extended random choice that satisfies Frame
Consistency Axiom in this section. Define the space of choice probabilities 𝒫 as a Carte-
sian product of the corresponding probability simplexes analogously to the one in the
basic setup:

𝒫 = ×
𝛽∈𝐵

(︃
×

𝐴: ∅̸=𝐴⊆𝑋

{︃
(𝜌𝐴𝛽 (𝑥))𝑥∈𝐴 ∈ 𝑅

|𝐴|
+ |

∑︁
𝑥∈

𝜌𝐴𝛽 (𝑥) = 1

}︃)︃
= ×

𝛽∈𝐵
𝒫𝛽 (50)

13Status Quo, List, Advertisement and Deadline examples in Salant and Rubinstein (2008).
14We should be careful here because advertisement can provide some objective information as well,

which is not covered by our analysis in this paper.
15This is in line with standard assumption that choice field is 2𝑋∖{∅} for finite set of alternatives 𝑋.

We can get results for less rich data containing only some menus 𝐴 ⊆ 𝑋 by considering the projections
of corresponding sets of choice probabilities on the subspace of observable random choices.

16Similar to the extended choice function 𝑐(𝐴, 𝑓) in Salant and Rubinstein (2008).
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where

𝒫𝛽 = ×
𝐴: ∅̸=𝐴⊆𝑋

{︃
(𝜌𝐴𝛽 (𝑥))𝑥∈𝐴 ∈ 𝑅

|𝐴|
+ |

∑︁
𝑥∈

𝜌𝐴𝛽 (𝑥) = 1

}︃
(51)

Extended random choice that satisfies Frame Consistency axiom is a subset of this space
𝒫consistent ⊂ 𝒫 :

𝒫consistent = ×
𝛽∈ℬ

𝑅𝑂𝛽 = (52)

= {𝜌 ∈ 𝒫 | {𝜌𝐴𝛽 (𝑥)}∅̸=𝐴⊆𝑋 admits random utility representation ∀𝛽 ∈ ℬ}

where 𝑅𝑂𝛽 ⊂ 𝒫𝛽 is a polygon in the space of choice probabilities for menus in frame
𝛽 consisting of points for which Falmagne’s conditions are satisfied. We say that choice
model 𝑀 =𝑀𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 admits arbitrary consistent framing effects if 𝒫(𝑀) = 𝒫consistent.

We may consider extended random choice {𝜌𝐴𝛽 (𝑥)}𝛽∈ℬ, ∅̸=𝐴⊆𝑋 as a random choice
{𝜌𝐴𝑖(𝑥)}𝑖∈ℐ defined in the basic model with index set

ℐ = ℐℬ ≡ {𝑖 = (𝐴′, 𝛽) | 𝐴′ ∈ 2𝑋∖{∅} , 𝛽 ∈ ℬ} (53)

Thus we have
𝜌𝐴

′

𝛽 (𝑥) = 𝜌𝐴(𝐴′,𝛽)(𝑥) (54)

connecting definitions of extended random choice in the setup with observable frames and
random choice in the basic setup. This allows us to use the definition of BAUP model
from the basic setup for the extended random choice data.

The idea of BAUP representation is that framing of a choice problem affects the way
DM learns her preferences. Thus we may argue that if framings of two choice problems
are the same, this should be reflected in the framing function of the BAUP representa-
tion; that is, these two choice problems should be associated with the same Blackwell
experiment. We should be more precise here though. Indeed, if we think about Blackwell
experiment as a conditional distribution Pr{𝜏 𝑖 = 𝜏 | 𝑠} = ℎ(𝑖)(𝑠, 𝜏), then two menus with
the same frame 𝛽 could give different signal realizations notwithstanding the fact that
conditional distributions of these signals are the same. This does not affect results if we
observe only a family of marginal probabilities distributions (random choice, extended
random choice) but do not consider their joint distribution. The latter can matter for the
dynamic random choice if analyst observes sequential decisions of each person in a popula-
tion. The other interpretation is that every choice problem in the frame is associated with
the same random signal defined as a measurable function on the underlying probability
space Ω (𝜏𝛽 : Ω → 𝑇 with 𝑇 being a finite space of possible signal realizations). We
assume that firstly 𝜔 ∈ Ω realizes and then the analyst observes random choice; therefore
signal realizations are the same across menus with the same frame. We will mostly use
this modeling approach; we formulate it in Definition 4. For the sake of completeness, we
also formulate the first approach, where choice problems with the same frame could give
rise to different signal realizations.

Definition 4. Strong frame consistency of BAUP model. Given a set of extended
choice problems indexed by 𝑖 ∈ ℐℬ, we say that BAUP model {𝑆, 𝑢, 𝜋, ℎ} is strongly consis-
tent with frames if ℎ(𝐴, 𝛽) = ℎ(𝐴′, 𝛽) = ℎ𝛽 for all 𝐴,𝐴′ ∈ 2𝑋∖{∅} in the sense of random
signal. In other words, all choice problems with the same frame 𝛽 are associated with the
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same random signal 𝜏𝛽, which has conditional distribution Pr{𝜏𝛽 = 𝜏 | 𝑠} = ℎ𝛽(𝑠, 𝜏), and
DM observes the same realization of 𝜏𝛽 for each choice problem in frame 𝛽.

Definition 4’. Weak frame consistency of BAUP model. Given a set of extended
choice problems indexed by 𝑖 ∈ ℐℬ, we say that BAUP model {𝑆, 𝑢, 𝜋, ℎ} is weakly con-
sistent with frames if ℎ(𝐴, 𝛽) = ℎ(𝐴′, 𝛽) = ℎ𝛽 for all 𝐴,𝐴′ ∈ 2𝑋∖{∅} in the sense of
conditional distributions. In other words, all choice problems with the same frame 𝛽
are associated with the same conditional distribution Pr{𝜏𝐴,𝛽 = 𝜏 | 𝑠} = ℎ𝛽(𝑠, 𝜏), but
the corresponding signals could have arbitrary joint distribution subject to this condition.

Observe that Definition 4 is stronger: it (obviously) implies Definition 4’, but not the
other way around. The difference between strong and weak versions of frame consistency
of BAUP model matters only if analyst observes some joint distribution of choice proba-
bilities. This is summarized in Proposition 2 below:

Proposition 2. For any weakly frame consistent regular BAUP model {𝑠, 𝑢, 𝜋, ℎ} there
exists a strongly frame consistent regular BAUP model {𝑠, 𝑢, 𝜋, ℎ̃} such that: (i) ℎ̃(𝐴, 𝛽)
has the same conditional distribution as ℎ(𝐴, 𝛽) for all 𝐴 ∈ 2𝑋∖{∅}, 𝛽 ∈ ℬ; (ii) it
induces the same marginal conditional distributions of expected utility functions as the
initial model; (iii) it induces the same extended random choice as the initial model.

The proof is simple and omitted in this version of the paper.

The notions of frame consistency for random choice and BAUP model are closely con-
nected. In fact, the latter implies the former, as is proven in Proposition 3.

Proposition 3. Given a set of extended choice problems indexed by 𝑖 ∈ ℐℬ, any regular
weakly consistent with frames BAUP model {𝑆, 𝑢, 𝜋, ℎ} induces frame consistent extended
random choice 𝜌.

Proof. Consider arbitrary frame 𝛽 ∈ ℬ. Weak frame consistency of BAUP model implies
that the following distribution 𝜇 over utility functions (𝜇 has a finite support) is the same
for all 𝐴 ∈ 2𝑋∖{∅}:

𝜇𝛽(𝑈) = Pr{ 𝜏𝐴,𝛽 | E[𝑢𝑠(𝑥) | 𝜏𝐴,𝛽] = 𝑈(𝑥) ∀𝑥 ∈ 𝑋 } (55)

Observe that random utility 𝜇𝛽 is regular (that is, probability of a tie is zero), because the
original BAUP model is regular. Therefore 𝜇𝛽 induces some random choice {𝜌𝐴𝛽 }𝐴: ∅̸=𝐴⊂𝑋 .
It is easy to see that 𝜌 is induced by the original BAUP model. Indeed,

∀𝛽 ∈ ℬ, 𝐴 ∈ 2𝑋∖{∅} Pr
{︀

E[𝑢𝑠(𝑥) | 𝜏𝐴,𝛽] ≥ E[𝑢𝑠(𝑦) | 𝜏𝐴,𝛽] ∀𝑦 ∈ 𝐴
}︀

= (56)

= 𝜇𝛽{𝑈 : 𝑈(𝑥) ≥ 𝑈(𝑦) ∀𝑦 ∈ 𝐴} = 𝜌𝐴𝛽 (𝑥)

Thus extended random choice 𝜌 induced by the considered BAUP model admits random
utility representation for any fixed 𝛽. Proposition 3 is proven.
Corollary. Proposition 3 is true for the strongly frame consistent regular BAUP model.
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The rest of the paper is devoted to the studies of conditions under which BAUP
models with consistent frames are almost indistinguishable from arbitrary consistent fram-
ing effects model, and under which, in contrast, there are some constraints on the extended
random choice induced by BAUP models. We will consider only extended random choices
that satisfy Frame Consistency axiom and BAUP models consistent with frames, therefore
we will omit words “frame consistency” for the ease of notation whenever it will not lead
to ambiguity in interpretations.

3.1 BAUP model with information structure

BAUP model is an information model in the first place. Therefore it is interesting
how we can apply it in the situations where it is natural to make additional assumptions
on the content of information that DM receives facing this or that choice problem. Re-
call that we used one such assumption in the definition of BAUP model consistent with
frames. But what if we have some additional structure on top of this? We motivate this
section by three examples.

Example 1. Dynamic random choice with frames17. Suppose that analyst observes a
sequence of choices of decisions makers. For example, one person goes to a shop on Mon-
day and faces extended choice problem (𝐴1, 𝛽1). Then she goes to a shop on Thursday
and faces (𝐴4, 𝛽4), and finally on Friday she decides what to choose from 𝐴5 given fram-
ing 𝛽5. In the BAUP framework we should say that she deals with “efficient” frame18

𝛽*
14 = 𝛽1 ∪ 𝛽4 when she makes her choice on Thursday, and similarly she receives a signal

associated with efficient frame 𝛽*
145 = 𝛽1∪𝛽4∪𝛽5 on Friday because she has learned some

information in the previous days. Suppose that analyst is able to keep track of sequential
decisions of each individual, then in this example analyst observes the probability of dif-
ferent vectors of choice functions 𝜌(𝐴1,𝛽1),(𝐴4,𝛽4),(𝐴5,𝛽5)(𝑥1, 𝑥4, 𝑥5) and similar probabilities
for individuals who go to the shop every day, or only on Wednesday, or on Tuesday and
Thursday, etc. Of course, menus and frames may also vary within each day.

Example 2. Some frames are more informative than others. Suppose that observation
of some particular alternatives in menu triggers DM’s thought process, helping to resolve
some of her uncertainty about preferences. We may argue then that larger menus should
provide DM with more information than smaller ones; it is also possible that DM spends
more time on making choice from larger menus. The opposite case is a limited attention
consideration, where we think that DM pays some cognitive cost to deal with menu, and
thus choice problem with larger menu provides DM with less information regarding her
tastes (i.e. she becomes distracted because of the framing). The other example is dead-
line, when frame corresponds to the maximum amount of time that DM is able to spend
on choice problem. Intuitively, the more time DM has, the more precise she becomes

17Dynamic random choice without knowledge of frames is a special case when analyst observes choice
frequencies from no more than one menu in each frame.

18That is, she receives both signals corresponding to frames 𝛽1 and 𝛽4.
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about her preferences19. BAUP model allows us to formalize this concept by assuming
that analyst knows an “informativeness” relation on the set of frames

⪰info ⊆ ℬ × ℬ (57)

and BAUP model should reflect this by framing function which maps more informative
frame to more informative with respect to Blackwell order of experiments:

𝛽 ⪰info 𝛽′ ⇒ ℎ(𝐴, 𝛽) ⪰Blackwell ℎ(𝐴′, 𝛽′) (58)

We require ⪰info to be transitive because of its interpretation.

Example 3. Analyst knows the explicit structure of news. Suppose frames are given
by a set of observed conditions (“advertisements”) under which DM makes her choice.
Thus analyst is able to observe DM’s choice in the presence of condition 𝑎, in the presence
of condition 𝑏 and in the presence of conditions 𝑎 and 𝑏 together, etc. Another exam-
ple is when we associate each alternative in menu with a component of framing, which
provides some information about the subjective state to DM. In these examples we can
say that there are some “basic blocks” or “news”, and each frame consists of some set
of basic news. We can define these blocks to be “basic” Blackwell experiments in BAUP
formalism in the sense that framing of a choice problem corresponds to the corresponding
compound Blackwell experiment.

It turns out that example 3 covers examples 1 and 2 as special cases (see Theorem
3). Therefore we focus on developing a formalism to model the explicit structure of news,
and on proving important technical statements for this setup. Then we show how to apply
these results to dynamic random choice and “informativeness relation” setups. We start
with a number of definitions.

An alphabet is a finite set 𝒦 = {1, ..., 𝐾}. A letter is a number 𝑘 ∈ 𝒦. A word ℒ is
a subset of an alphabet ℒ ⊆ 𝒦. A transcription function is a mapping 𝑡 : ℬ → 2𝒦

from the set of frames to the set of words. Given a finite family of Blackwell experiments
{𝜎𝑞}𝑞∈𝑄 on 𝑆 with finite signal spaces and corresponding random signals 𝜏𝑞, for any non-
empty subset 𝑄′ ⊆ 𝑄 we define 𝜎𝑄′ ≡

⋃︀
𝑞∈𝑄′

𝜎𝑞 to be a compound Blackwell experiment

with the corresponding vector of random signals (𝜏𝑞)𝑞∈𝑄′ ; in other words, agent receives
all signals 𝜏𝑞 with 𝑞 ∈ 𝑄′ from the compound experiment 𝜎𝑄′ . We define 𝜎{∅} to be a
trivial Blackwell experiment20. Note also that 𝜎{𝑞} = 𝜎𝑞. Now we are ready to define the
notion of information structure.

Definition. BAUP model with information structure. Given a set of frames
ℬ, we say that strongly frame consistent BAUP model {𝑆, 𝑢, 𝜋, ℎ} exhibits information
structure (𝒦, 𝑡) given by alphabet 𝒦 = {1, ..., 𝐾} and transcription function 𝑡 : ℬ → 2𝒦 if
there exists a family {𝜎𝑘}𝑘∈𝒦 of Blackwell experiments on 𝑆 with finite signal space (let’s
call them basic experiments), indexed by letters of the alphabet, such that ℎ𝛽 = 𝜎𝑡(𝛽).
In other words, Blackwell experiment associated with frame 𝛽 should be a compound

19Natenzon (2012) considers a variant of this model under some parametric assumptions.
20That is, a Blackwell experiment with signal space of size 1, providing uninformative signals.
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experiment consisting of a subset of basic experiments 𝜎𝑘 prescribed by a transcription
function 𝑡.

Note that BAUP model can exhibit multiple information structures for different fami-
lies of Blackwell experiments 𝜎𝑘.

Definition. Fine information structure. Given a set of frames ℬ, we say that infor-
mation structure (𝒦, 𝑡) is fine if transcription function 𝑡 is a one-to-one mapping from ℬ
to 2𝒦∖{∅}. Note that this requires 2𝐾 − 1 ≥| ℬ | and ∅ ̸∈ Im𝑡(ℬ)21.

Let 𝐷 be the set of total orders on 𝑋. Given a set of frames ℬ, we define a vector of
total orders d ∈ D ≡ 𝐷|ℬ| to be an element of the Cartesian product of | ℬ | sets of total
orders on 𝑋 indexed by 𝛽 ∈ ℬ. 𝑑𝛽 is then the total order corresponding to 𝛽-coordinate of
d in D. Given a set of frames ℬ and strongly frame consistent BAUP model {𝑆, 𝑢, 𝜋, ℎ},
we define a vector of signals 𝜏 = (𝜏 1, ..., 𝜏𝛽, ..., 𝜏 |ℬ|) to be a random variable equal to the
vector with components being random signals 𝜏𝛽 associated with Blackwell experiments
ℎ𝛽.

Let 𝜇(d) be a distribution of vectors of total orders on 𝑋. We say that 𝜇(d) is
induced by a strongly frame consistent regular BAUP model {𝑆, 𝑢, 𝜋, ℎ} if

𝜇(d) = Pr { 𝜏 | 𝑥𝑑𝛽𝑦 ⇔ E[𝑢𝑠(𝑥) | 𝜏𝛽] ≥ E[𝑢𝑠(𝑦) | 𝜏𝛽] ∀𝑥, 𝑦 ∈ 𝑋, 𝛽 ∈ ℬ } (59)

The following lemma is a key result, which lies in the heart of “everything goes” con-
clusion about the representation of random choice with a BAUP model with particular
information structure.

Lemma 1. Let the finite set of frames ℬ be given. Then for any fine information struc-
ture (𝒦, 𝑡), for any distribution 𝜇(d) of vectors of total orders on 𝑋 with full support
there exists a strongly frame consistent regular BAUP model {𝑆, 𝑢, 𝜋, ℎ} that exhibits
information structure (𝒦, 𝑡) and induces distribution of vectors of random orders 𝜇(d).
Moreover, 𝜇(d) could be induced by a population of the described above BAUP decision
makers such that basic Blackwell experiments associated with letters of alphabet 𝑘 ∈ 𝒦
have two possible signal realizations 𝜏 𝑘 ∈ {0, 1}.

Proof. It is enough to show that lemma is true when | ℬ |= 2𝐾 − 1. If | ℬ |< 2𝐾 − 1,
we can augment ℬ with fake frames and enlarge vector of total orders preserving full
support condition in order to use the result from the previous case. Therefore WLOG
| ℬ |= 2𝐾 − 1, and transcription function 𝑡 is a bijection from ℬ to 2𝐾∖{∅}, since infor-
mation structure (𝒦, 𝑡) is fine.

We proceed in three steps. Firstly, we show how to get any vector of expected utility

21This means that each frame should correspond to some informative Blackwell experiment. If we allow
for the trivial Blackwell experiment, Theorem 3 continuous to work in the population interpretation. We
can say that non-trivial Blackwell experiments allow us to provide DM information about her “population
type”.
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functions (𝑉ℒ)ℒ∈2𝑋∖{∅} at some (subjective) state of the world. Secondly, we show that
this allows us to construct a strongly frame consistent BAUP model exhibiting informa-
tion structure (𝒦, 𝑡) that induces some distribution of vectors of total orders 𝜇̃(d) with
full support. Thirdly, we rescale probabilities and utilities such that 𝜇̃(d) becomes 𝜇(d).

Step 1. Consider state space

𝑆 = {𝑠𝜃𝑚}𝜃∈Θ𝑚∈{0,1}𝐾 ≡ {𝑠𝜃𝑚1...𝑚𝐾
}𝜃∈Θ(𝑚1,...,𝑚𝐾)∈{0,1}𝐾 (60)

indexed by the “news realizations” 𝑚𝑘 ∈ {0, 1}, 𝑘 = 1, ..., 𝐾 and “type” of DM 𝜃 ∈ Θ,
where Θ is a finite set with cardinality | Θ |=| 𝐷 |2𝐾−1. As usual, define 𝜃(𝑠) to be
coordinate of 𝑠 corresponding to type 𝜃, and 𝑚𝑘(𝑠) to be coordinate of 𝑠 corresponding
to the 𝑘-th “news realization”:

𝑠 ≡ 𝑠
𝜃(𝑠)
𝑚(𝑠) ≡ 𝑠

𝜃(𝑠)
𝑚1(𝑠)...𝑚𝐾(𝑠) (61)

Let prior distribution be uniform: 𝜋 = 𝜋uniform with 𝜋uniform(𝑠) =| 𝑆 |−1 ∀𝑠. Consider
Blackwell experiments 𝜎0, 𝜎1, ..., 𝜎𝐾 such that Θ is a space of signal realizations for 𝜎0,
and {0, 1} is a space of signal realizations for each 𝜎𝑘 with 𝑘 = 1, .., 𝐾, and

𝜎0(𝑠, 𝜏
0 = 𝜃′) = 1{𝜃′ = 𝜃(𝑠)} ∀𝜃′ ∈ Θ (62)

𝜎𝑘(𝑠, 𝜏
𝑘 = 𝑖) = 1{𝑖 = 𝑚𝑘(𝑠)} ∀𝑖 ∈ {0, 1} for 𝑘 = 1, ..., 𝐾

Observe that signal realization is completely determined by state 𝑠, thus we may write
𝜏 0(𝑠) and 𝜏 𝑘(𝑠). Therefore these Blackwell experiments induce partitional information
structures on 𝑆, and we can recover the joint distribution of the corresponding signals
from the given above marginal distributions. The partitions of state space 𝑆 induced by
experiments 𝜎0 and 𝜎𝑘 are given below:

𝑃𝜎0(𝑠) ≡ {𝑠′ ∈ 𝑆 | 𝜏 0(𝑠′) = 𝜏 0(𝑠)} = {𝑠′ ∈ 𝑆 | 𝜃(𝑠′) = 𝜃(𝑠)} (63)

𝑃𝜎𝑘
(𝑠) ≡ {𝑠′ ∈ 𝑆 | 𝜏 𝑘(𝑠′) = 𝜏 𝑘(𝑠)} = {𝑠′ ∈ 𝑆 | 𝑚𝑘(𝑠

′) = 𝑚𝑘(𝑠)}

Thus the compound experiments constructed from 𝜎0, 𝜎1, ..., 𝜎𝐾 are well-defined. Consider
compound experiments

𝜎𝑘 = 𝜎0 ∪ 𝜎𝑘 (64)

Their conditional distributions are given by

𝜎𝑘(𝑠, (𝜃
′, 𝑖)) = 1{ 𝜃′ = 𝜃(𝑠) , 𝑖 = 𝑚𝑘(𝑠) } (65)

and the corresponding partitions are given by

𝑃𝜎𝑘(𝑠) ≡ {𝑠′ ∈ 𝑆 | (𝜏 0, 𝜏 𝑘)(𝑠′) = (𝜏 0, 𝜏 𝑘)(𝑠)} = (66)

= {𝑠′ ∈ 𝑆 | 𝜃(𝑠′) = 𝜃(𝑠) , 𝑚𝑘(𝑠) = 𝑚𝑘(𝑠
′)}

Finally, for any non-empty word ℒ ∈ 2𝒦∖{∅} the corresponding compound Blackwell
experiment

𝜎ℒ ≡ ∪
𝑘∈ℒ

𝜎𝑘 (67)
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has the following conditional distribution and associated partition of the state space:

𝜎ℒ(𝑠, (𝜃
′, i)) = 1{ 𝜃′ = 𝜃(𝑠) , 𝑖𝑘 = 𝑚𝑘(𝑠) ∀𝑘 ∈ ℒ} (68)

𝑃ℒ(𝑠) = {𝑠′ ∈ 𝑆 | 𝜃(𝑠′) = 𝜃(𝑠) , 𝑚𝑘(𝑠
′) = 𝑚𝑘(𝑠) ∀𝑘 ∈ ℒ}

We define framing function ℎ according to the information structure (𝒦, 𝑡) applied to the
basic experiments 𝜎𝑘, 𝑘 ∈ 𝒦. That is, ℎ𝛽 = 𝜎𝑡(𝛽) and we require strong frame consistency
for ℎ(𝑖) as a framing function in the BAUP model.

Let {𝑉 𝜃
ℒ (𝑥)}𝜃∈Θ, ℒ∈2𝒦∖{∅} be a family of utility functions. Consider states 𝑠𝜃𝜄 where

𝜄 = (1, 1, ..., 1) is a vector of ones. Denote also ℒ(𝑚) = {𝑘 ∈ 𝒦 | 𝑚𝑘 = 1}.
Claim: the following state-dependent utility function

𝑢̂𝑠(𝑥) = ≡
∑︁

𝒥 : ℒ(𝑚(𝑠))⊆𝒥⊆𝒦

(−1)|𝒥 |−|ℒ(𝑚(𝑠))| · 2𝐾−|𝒥 | · 𝑉 𝜃
𝒥 (𝑥) (69)

is such that

E𝜋uniform [𝑢̂𝑠′(𝑥) | 𝑠′ ∈ 𝑃ℒ(𝑠
𝜃
𝜄 )] = 𝑉 𝜃

ℒ (𝑥) ∀ ℒ ∈ 2𝒦∖{∅}, 𝜃 ∈ Θ (70)

Indeed,

E𝜋uniform [𝑢̂𝑠′(𝑥) | 𝑠′ ∈ 𝑃ℒ(𝑠
𝜃
𝜄 )] =

∑︀
𝜃′

∑︀
𝑚

1{𝜃′ = 𝜃}
∏︀
𝑘∈ℒ

1{𝑚𝑘 = 1} · 𝑢𝑠𝜃′𝑚(𝑥)∑︀
𝜃′

∑︀
𝑚

1{𝜃′ = 𝜃}
∏︀
𝑘∈ℒ

1{𝑚𝑘 = 1}
= (71)

=
1

2𝐾−|ℒ| ·
∑︁

𝑚: ℒ⊆ℒ(𝑚)⊆𝒦

𝑢𝑠𝜃𝑚(𝑥) =

=
1

2𝐾−|ℒ| ·
∑︁

𝑚: ℒ⊆ℒ(𝑚)⊆𝒦

⎛⎝ ∑︁
𝒥 : ℒ(𝑚)⊆𝒥⊆𝒦

(−1)|𝒥 |−|ℒ(𝑚)| · 2𝐾−|𝒥 | · 𝑉 𝜃
𝒥 (𝑥)

⎞⎠ =

= 𝑉 𝜃
ℒ (𝑥) +

1

2𝐾−|ℒ| ·
∑︁

𝒥 : ℒ(𝒥⊂𝒦

(−1)|𝒥 | · 2𝐾−|𝒥 | · 𝑉 𝜃
𝒥 (𝑥) ·

⎛⎝ ∑︁
𝑚: ℒ⊆ℒ(𝑚)⊆𝒥

(−1)−|ℒ(𝑚)|

⎞⎠
⏟  ⏞  

=0 for 𝒥 ≠ℒ

= 𝑉 𝜃
ℒ (𝑥)

Step 2. By virtue of our choice of Θ we have | Θ | = | 𝐷 |2𝐾−1 = | D |. Therefore there
is a bijection between the space of vectors of total orders D and Θ. We can identify each
𝜃 ∈ Θ with some vector of total orders d ∈ D and vice versa; abusing notations, let’s say
that 𝜃 = d. Consider the following family of utility functions

𝑉 𝜃
ℒ (𝑥) = #{𝑦 ∈ 𝑋 | 𝑥𝜃𝑡−1(ℒ)𝑦} 𝜃 ∈ Θ, ℒ ∈ 2𝒦∖{∅} (72)

where 𝜃𝑡−1(ℒ) is total order equal to the coordinate of vector d corresponding to the frame
𝛽 such that 𝑡(𝛽) = ℒ (recall that transcription function 𝑡 is a bjiection under our assump-
tions and thus the inverse transcription function 𝑡−1 is well-defined for all ℒ ∈ 2𝒦∖{∅}).
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Figure 2: State space used in the proof of Lemma 1, an example with Θ = {𝑎, 𝑏, 𝑐, 𝑑} and
𝐾 = 2. Black lines corresponds to the partition induced by 𝜎0 (i.e. “population type”),
green lines - to the partition induced by 𝜎1, and red lines - by 𝜎2. Realized state is 𝑠𝑎11, and
solid lines with filling correspond to the realized elements of partitions 𝑃𝜎0(𝑠

𝑎
11), 𝑃𝜎1(𝑠

𝑎
11)

and 𝑃𝜎2(𝑠
𝑎
11).

Observe that utility function 𝑉 𝜃
ℒ represents total order 𝜃𝑡−1(ℒ).

Now use step 1 to come up with a state-dependent utility function 𝑢̂𝑠(𝑥) such that ex-
pected utility of DM at state 𝑠𝜃𝜄 under frame 𝛽 is 𝑉 𝜃

𝑡(𝛽). Pick some transcendental number

𝜖 ∈ (0, 1) (say, 𝜖 = 𝑒−1), enumerate arbitrary 𝑥 ∈ 𝑋 by 𝑥1, ..., 𝑥𝑛 and consider the following
state-dependent utility function:

𝑢̃𝑠(𝑥
𝑞) = 𝑢̂𝑠(𝑥

𝑞) + 𝜖𝑞 (73)

where 𝜖𝑞 is just 𝜖 to the power 𝑞. Because of the partitional informational structure,
expected utility of DM at frame 𝛽 is completely determined by the state 𝑠. Observe
that E[𝑢̃𝑠′(𝑥𝑞) | 𝑠 ∈ 𝑃𝑡(𝛽)(𝑠)] = 𝑎(𝑠, 𝛽, 𝑥𝑞) + 𝜖𝑞 where 𝑎(𝑠, 𝛽, 𝑥𝑞) is some rational number.
Therefore ties occur with zero probability, since 𝑎+𝜖𝑞 = 𝑎′+𝜖𝑞

′
for some rational numbers

𝑎, 𝑎′ and natural numbers 𝑞 ̸= 𝑞′ contradicts 𝜖 being transcendental. Hence BAUP model
{𝑆, 𝑢̃, 𝜋uniform, ℎ} is regular. It is also strongly frame consistent by construction. Next, we
have:

𝐸𝜋uniform [𝑢̃𝑠′(𝑥
𝑞) | 𝑠′ ∈ 𝑃𝑡(𝛽)(𝑠

𝜃
𝜄 )] = #{𝑦 ∈ 𝑋 | 𝑥𝑞𝜃𝛽𝑦}+ 𝜖𝑞 (74)

Therefore, for 𝑥𝑞 ̸= 𝑥𝑟 we have

𝑥𝑞𝜃𝛽𝑥
𝑟 ⇒ 𝐸𝜋uniform [𝑢̃𝑠′(𝑥

𝑞) | 𝑠′ ∈ 𝑃𝑡(𝛽)(𝑠
𝜃
𝜄 )] = #{𝑦 ∈ 𝑋 | 𝑥𝑞𝜃𝛽𝑦}+ 𝜖𝑞 ≥ (75)

≥ #{𝑦 ∈ 𝑋 | 𝑥𝑟𝜃𝛽𝑦}+ 1 + 𝜖𝑞 > #{𝑦 ∈ 𝑋 | 𝑥𝑟𝜃𝛽𝑦}+ 𝜖𝑟 =

= 𝐸𝜋uniform [𝑢̃𝑠′(𝑥
𝑟) | 𝑠′ ∈ 𝑃𝑡(𝛽)(𝑠

𝜃
𝜄 )]
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which means that at state 𝑠𝜃𝜄 DM’s expected utility at frame 𝛽 represents total order 𝜃𝛽.
We conclude that

𝜇̃(d) ≡ Pr { 𝜏 | 𝑥𝑑𝛽𝑦 ⇔ E[𝑢𝑠(𝑥) | 𝜏𝛽] ≥ E[𝑢𝑠(𝑦) | 𝜏𝛽] ∀𝑥, 𝑦 ∈ 𝑋, 𝛽 ∈ ℬ } ≥ (76)

≥ Pr{𝑠d𝜄 } = | 𝑆 |−1 > 0 ∀d ∈ D

and hence strongly frame consistent regular BAUP model {𝑆, 𝑢̃, 𝜋uniform, ℎ} represents dis-
tribution over vectors of total orders 𝜇̃(d) with full support.

Step 3. The last step is the easiest one to prove. We use flexibility of BAUP model
allowing to rescale utilities and probabilities, preserving the values of expected utilities.
Define

d(𝑠) : E[𝑢̃𝑠′(𝑥) | 𝑠′ ∈ 𝑃𝑡(𝛽)(𝑠)] ≥ E[𝑢̃𝑠′(𝑦) | 𝑠′ ∈ 𝑃𝑡(𝛽)(𝑠)] ⇔ 𝑥𝑑𝛽(𝑠)𝑦 ∀𝛽 ∈ ℬ (77)

Next, ∀d ∈ D define

𝑆(d) = {𝑠 ∈ 𝑆 | d(𝑠) = d}
by step 2

̸= ∅ (78)

Consider prior probability distribution

𝜋(𝑠) =
𝜇(d)

| 𝑆(d) |
> 0 (79)

since 𝜇(d) has full support and 𝑆(d) ̸= ∅ by step 2. Consider state-dependent utility
function

𝑢𝑠(𝑥) =
𝜋uniform(𝑠)

𝜋(𝑠)
𝑢̃𝑠(𝑥) (80)

Then it is easy to check that BAUP model {𝑆, 𝑢, 𝜋, ℎ} is regular, strongly frame consistent
and it induces distribution of vectors of total orders d. The key observation is that since
𝜋utinform(𝑠)𝑢̃𝑠(𝑥) = 𝜋𝑢(𝑠)𝑢𝑠(𝑥), we have

E𝜋[𝑢𝑠′(𝑥) | 𝑠′ ∈ 𝑃𝑡(𝛽)(𝑠)] = E𝜋uniform [𝑢̃𝑠′(𝑥) | 𝑠′ ∈ 𝑃𝑡(𝛽)(𝑠)] ∀𝛽 ∈ ℬ , 𝑥 ∈ 𝑋 (81)

and therefore d(𝑠) and 𝑆(d) remains the same in the BAUP model {𝑆, 𝑢, 𝜋, ℎ} as in the
model {𝑆, 𝑢̃, 𝜋uniform, ℎ}. Next, for the distribution of vectors of total orders 𝜇{𝑆,𝑢,𝜋,𝑓}(d),
induced by model {𝑆, 𝑢, 𝜋, ℎ}, we have:

𝜇{𝑆,𝑢,𝜋,𝑓}(d) = 𝜋(𝑆(d)) =
∑︁
𝑠∈𝑆(d)

𝜇(d)

| 𝑆(d) |
= 𝜇(d) (82)

This concludes calculations of step 3.

Finally, we get the desired population interpretation of random choice with basic exper-
iments 𝜎𝑘 𝑘 = 1, .., 𝐾 having binary signal realizations, and population types 𝜃. Lemma
1 is proven.
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With the help of lemma 1 we are able to formulate and prove the main “everything
goes” result of this section. It turns out that information structure (𝒦, 𝑡) imposed on the
top of BAUP model does not provide any discipline on the induced random choice. One
of the consequences of this fact is that there is no hope to infer any knowledge about
the information structure of frames from the point of view of BAUP decision maker by
observing the (extended) random choice. Formal statement is given in Theorem 3 below.

Theorem 3. Weakly frame consistent regular BAUP model with any fine information
structure (𝒦, 𝑡) is almost indistinguishable with a model of arbitrary consistent framing
effects and, therefore, is almost indistinguishable with any other weakly frame consistent
regular BAUP model with different fine information structure (𝒦′, 𝑡′). Moreover, if BAUP
model is also strongly frame consistent, this result continues to hold for the case when
analyst observes joint distribution of choice probabilities22.

∙ Corollary 1. Regular BAUP model is almost indistinguishable with a model of ar-
bitrary framing effects in the dynamic random choice setup, when analyst observes
sequence of choices of individual decision makers. Strongly frame consistent regu-
lar BAUP model is almost indistinguishable with a model of arbitrary consistent
framing effects in case of the extended dynamic random choice.

∙ Corollary 2. Weakly frame consistent regular BAUP model is almost indistinguish-
able with a model of arbitrary framing effects even if analyst additionally knows a
transitive informativeness relation defined on the set of frames.

Proof. We’ll show here the second statement (about joint distributions). The statement
about marginal distributions could be proven using the same logic.

The theorem follows almost immediately from Lemma 1. Let’s work in the space of
joint probability distributions. We are going to show that the set of random choices
induced by the described above BAUP model contains an interior of the space of joint
probability distributions corresponding to arbitrary consistent framing effects (let’s call it
ℛ). If we prove that, then the closure of the former set is equal to the latter (recall that
by Proposition 3 the latter set contains the former), and we have the desired result. Pick
some point in the interior of the space of joint probability distributions corresponding to
arbitrary consistent framing effects 𝜌. Then it has some representation via random of
vector orders 𝜇(d). Now let 𝜇𝑢𝑛𝑖𝑓𝑜𝑟𝑚(.) be a uniform distribution on the space D and
𝜌𝑢𝑛𝑖𝑓𝑜𝑟𝑚 be the corresponding random choice. Consider 𝜌′ given by

𝜌′ =
1

1− 𝜖
𝜌− 𝜖

1− 𝜖
𝜌𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (83)

Since 𝜌 is an interior point of ℛ, then we can choose 𝜖 small enough such that 𝜌′ ∈ ℛ.
Then it has some representation by distribution 𝜇′(.) over D. Finally,

𝜌 = (1− 𝜖)𝜌+ 𝜖𝜌𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (84)

22With the notion of almost indistinguishability extended naturally by the help of Euclidean metrics.
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Therefore, since 𝜌 is linear in the probability measure over vectors of total orders that
induces 𝜌, it has a representation

𝜇′′(d) = (1− 𝜖)𝜇′(d) + 𝜖𝜇𝑢𝑛𝑖𝑓𝑜𝑟𝑚(d) (85)

Observe that 𝜇′′ has full support and therefore we can apply Lemma 1 to conclude the
proof.

Proof of Corollary 1.
Denote time by 𝜏 = 1, 2, 3, ..𝑇 . We assume time to have finitely menu periods in order
to avoid technical complications. Divide DMs by types 𝜃 ∈ Θ such that each type has a
unique ordered sequence of choice problems indexed by frame 𝛽 and time 𝜏 . Let

𝛾𝜃𝜏 = {𝛽 | DM𝜃 faced frame 𝛽 at time 𝜏 ′ ≤ 𝜏} (86)

Note that it is possible to have 𝛾𝜃𝜏 = 𝛾𝜃
′

𝜏 ′ ; note also that we have finitely many 𝛾𝜃𝜏 for
different 𝜏 and 𝜃. Therefore, we can construct a new set of frames

Γ = {𝛾 | 𝛾 = 𝛾𝜃𝜏 for some 𝜏, 𝜃} (87)

Now, abusing notations, pick 𝒦 = ℬ and define transcription function 𝑡 : Γ → 2𝒦∖{∅}
such that

𝑡(𝛾) = 𝛾 (88)

Then (𝒦, 𝑡) is a fine information structure and we can apply Theorem 3 to get Corollary 1.

Proof of Corollary 2.
We have a transitive relation ⪰info⊆ ℬ × ℬ. Let’s construct the following information
structure (𝒦, 𝑡). Firstly, pick 𝐾 =| ℬ |, enumerate 𝛽 ∈ ℬ by 𝛽1, ..., 𝛽𝐾 and consider
bijection 𝑗 : ℬ → 𝒦 given by 𝑗(𝛽𝑖) = 𝑖. Next, denote

𝑊 (𝛽) = {𝛽′ ∈ ℬ | 𝛽 ⪰info 𝛽
′} (89)

Let the transcription function be

𝑡(𝛽) = 𝑗(𝑊 (𝛽)) ≡ {𝑖 ∈ 𝒦 | ∃𝛽′ ∈ 𝑊 (𝛽) : 𝑖 = 𝑗(𝛽′)} (90)

Then, using transitivity of ⪰info, we get

𝛽 ⪰info 𝛼 ⇒ 𝑊 (𝛼) ⊆ 𝑊 (𝛽) ⇒ 𝑗(𝑊 (𝛼)) ⊆ 𝑗(𝑊 (𝛽)) ⇒ (91)

⇒ ℎ𝛽 = 𝜎𝑊 (𝛽) ⪰Blackwell 𝜎𝑊 (𝛼) = ℎ𝛼

Application of Theorem 3 then concludes the proof.
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3.2 Representation with state space of limited size

Theorem 2 says that if analyst does not observe frames, then BAUP model allows for
(almost) arbitrary framing effects even if DM’s uncertainty about her tastes is encoded by
the state space of size 2. It is no longer true when analyst observes the extended random
choice. Moreover, frame consistent23 BAUP model with limited state space of any size is
falsifiable in finite data samples (i.e. it is not almost indistinguishable with the model of
arbitrary consistent framing effects) if the number of alternatives | 𝑋 | is big enough. This
section contains some explicit examples of necessary conditions for the extended random
choice to be representable by a frame-consistent BAUP model with limited state space.
We also give one general result: a low bound on the size of subjective state space of DM
necessary for the frame consistent BAUP model to induce arbitrary consistent framing
effects.

Importantly, in this section we consider an extended random choice of a population
of decision makers, rather then that of an individual DM. Previously we had no constrains
on the size of state space, and this allowed us to entwine implicitly a “population” type
of DM via some signal that told DM in what part of state space she is. Therefore we
always could interpret models that we considered before as models of population random
choice as well and vice versa. When we put constrains on the size of the state space, we
should choose one of the interpretations explicitly, and we consider population random
choice here, using eq. (36) for the definition of representation.

Example 4. Suppose that analyst observes an extended random choice 𝜌𝐴𝛽 (.); we

write 𝜌𝑥𝑦𝛽 (.) instead of 𝜌
{𝑥,𝑦}
𝛽 (.) and similarly for other 𝜌-s for the ease of notations. Let

𝑀2 be a frame consistent BAUP model with binary state space 𝑆 = {𝑠1, 𝑠2}. Below is a
comparison of some of the necessary conditions on the extended random choice given by
different models. Denote

𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) ≡ 𝜌𝑥𝑦𝛼 (𝑥)− 𝜌𝑥𝑦𝑧𝛼 (𝑥) + 𝜌𝑦𝑧𝛽 (𝑦)− 𝜌𝑥𝑦𝑧𝛽 (𝑦) + 𝜌𝑥𝑧𝛾 (𝑧)− 𝜌𝑥𝑦𝑧𝛾 (𝑧) (92)

Then ∀𝛼, 𝛽, 𝛾 ∈ ℬ and distinct 𝑥, 𝑦, 𝑧 ∈ 𝑋 ranges of 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) that could be induced
by the corresponding models are given below:

(i) Random utility model : 0 ≤ 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) ≤ 1
(ii) Frame consistent BAUP model 𝑀2 : 0 ≤ 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) < 2
(iii) Frame consistent BAUP model : 0 ≤ 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) < 3
(iv) Arbitrary consistent framing effects : 0 ≤ 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) ≤ 3
(v) BAUP model : −3 < 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) < 3
(vi) Arbitrary framing effects : −3 ≤ 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) ≤ 3

(93)

To see this, note that arbitrary framing effects model does not provide any restrictions
on the choice probabilities, justifying (vi). Similarly general BAUP model (not neces-
sarily consistent with frames) allows, according to Theorem 1, for everything except of
𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) = −3 and 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) = 3, because these extreme cases violate Revealed
Dominance Acyclicity Axiom. Next, when extended random choice is consistent with

23Since we do not consider joint distribution of random choices here, strong and weak versions of frame
consistency are equivalent for our purposes and we do not distinguish them.
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Figure 3: Expected utilities for decision makers of types 𝜓1 = {𝑥𝑦𝑧, 𝑦𝑥𝑧, 𝑦𝑧𝑥, 𝑧𝑦𝑥} (left
plot) and 𝜓2 = {𝑥𝑦𝑧, 𝑥𝑧𝑦, 𝑧𝑥𝑦, 𝑧𝑦𝑥} (right plot) when state space is binary 𝑆 = {𝑠1, 𝑠2}.
Horizontal Axis corresponds to the probability of state 𝑠2 and vertical Axis corresponds
to the expected utility of alternative.

frames, then
𝑝𝛼(𝑧𝑥𝑦) ≡ 𝜌𝑥𝑦𝛼 (𝑥)− 𝜌𝑥𝑦𝑧𝛼 (𝑥) ≥ 0
𝑝𝛽(𝑥𝑦𝑧) ≡ 𝜌𝑦𝑧𝛽 (𝑦)− 𝜌𝑥𝑦𝑧𝛽 (𝑦) ≥ 0

𝑝𝛾(𝑦𝑧𝑥) ≡ 𝜌𝑥𝑧𝛾 (𝑧)− 𝜌𝑥𝑦𝑧𝛾 (𝑧) ≥ 0
(94)

where 𝑝𝛼(𝑧𝑥𝑦) stands for the probability of total order 𝑑 such that 𝑧𝑑𝑥𝑑𝑦 in the random
order representation of choices in frame 𝛼, and similar for other 𝜌-s. Thus 𝑝𝛼(𝑧𝑥𝑦) ≥ 0
and similar inequalities stand for the Monotonicity property of random choice consistent
with random utility model for frame 𝛼. Using this observation we get (i) and (iv) for free
and (iii) with the help of Theorems 3 and Theorem 1. Now let’s show how we can get (ii)
and other similar inequalities for the BAUP models with limited state space.

Consider Fig. (3). The left plot shows the type of DM that was used in the proof
of Theorem 2. Let 𝜇 be a probability that DM assigns to state 𝑠2. At state 𝑠1 (𝜇 = 0)
and when 𝜇 is small DM orders alternatives accroding to order 𝑑0: 𝑥𝑑0𝑦𝑑0𝑧; we make use
of short notation 𝑑0 = 𝑥𝑦𝑧. When 𝜇 increases, at some intermediate values of 𝜇 DM has
orders 𝑦𝑥𝑧 and 𝑦𝑧𝑥. Finally, when 𝜇 is close to one, DM orders alternative according to
𝑑1 = 𝑧𝑦𝑥 . The core feature that we used in the proof of Theorem 2 is that, depending
on 𝜇, each alternative could be the best among all, and also that at state 2 alternatives
are ordered in reverse order in comparison to state 1. Observation of random choice from
each menu in the frame allows analyst to recover not only the distribution of the best
alternatives in a given menu, but also the distribution of total orders on the triple of
alternatives 𝑥, 𝑦, 𝑧. Therefore decision maker of the type considered at the left plot of fig.
3 cannot justify arbitrary distribution over orders, she can only justify distributions with
support equal to 𝜓1 = {𝑥𝑦𝑧, 𝑦𝑥𝑧, 𝑦𝑧𝑥, 𝑧𝑦𝑥}.

Similar considerations apply to DM whose expected utility is given at the right plot
of Fig. (3); let’s call her type 𝜓4 = {𝑥𝑦𝑧, 𝑥𝑧𝑦, 𝑧𝑥𝑦, 𝑧𝑦𝑥}. Using permutations of 𝑥, 𝑦, 𝑧
we get types 𝜓2, 𝜓3 from 𝜓1 and 𝜓5, 𝜓6 from 𝜓2. Next, if 𝑑0 = 𝑥𝑦𝑧 and 𝑑1 = 𝑥𝑧𝑦, we get
type 𝜓7 = {𝑥𝑦𝑧, 𝑥𝑧𝑦, 𝑧𝑥𝑦} and 𝜓8, 𝜓9 as permutations of 𝜓10. Starting from 𝑑0 = 𝑥𝑦𝑧
and 𝑑1 = 𝑦𝑥𝑧, we get 𝜓10 = {𝑥𝑦𝑧, 𝑦𝑥𝑧} and similarly 𝜓11, 𝜓12; starting from 𝑑0 = 𝑥𝑦𝑧
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and 𝑑1 = 𝑥𝑧𝑦, we get 𝜓13 = {𝑥𝑦𝑧, 𝑥𝑧𝑦} and 𝜓14, 𝜓15; finally, 𝑑0 = 𝑑1 = {𝑥𝑦𝑧} gives us
𝜓16 = {𝑥𝑦𝑧} and similarly for 𝜓17 − 𝜓21. This classification of population types 𝜓 ∈ Θ
is summarized below24.

𝜓1 = {𝑥𝑦𝑧, 𝑦𝑥𝑧, 𝑦𝑧𝑥, 𝑧𝑦𝑥} 𝜓2 = {𝑦𝑧𝑥, 𝑧𝑦𝑥, 𝑧𝑥𝑦, 𝑥𝑧𝑦} 𝜓3 = {𝑧𝑥𝑦, 𝑥𝑧𝑦, 𝑥𝑦𝑧, 𝑦𝑥𝑧}
𝜓4 = {𝑥𝑦𝑧, 𝑥𝑦𝑧, 𝑧𝑦𝑥, 𝑧𝑦𝑥} 𝜓5 = {𝑦𝑧𝑥, 𝑦𝑧𝑥, 𝑥𝑧𝑦, 𝑥𝑧𝑦} 𝜓6 = {𝑧𝑥𝑦, 𝑧𝑥𝑦, 𝑦𝑥𝑧, 𝑦𝑥𝑧}
𝜓7 = {𝑥𝑦𝑧, 𝑥𝑧𝑦, 𝑧𝑥𝑦} 𝜓8 = {𝑦𝑧𝑥, 𝑦𝑥𝑧, 𝑥𝑦𝑧} 𝜓9 = {𝑧𝑥𝑦, 𝑧𝑦𝑥, 𝑦𝑧𝑥}
𝜓10 = {𝑥𝑦𝑧, 𝑦𝑥𝑧} 𝜓11 = {𝑦𝑧𝑥, 𝑧𝑦𝑥} 𝜓12 = {𝑧𝑥𝑦, 𝑥𝑧𝑦}
𝜓13 = {𝑥𝑦𝑧, 𝑥𝑧𝑦} 𝜓14 = {𝑦𝑧𝑥, 𝑦𝑥𝑧} 𝜓15 = {𝑧𝑥𝑦, 𝑧𝑦𝑥}
𝜓16 = {𝑥𝑦𝑧} 𝜓17 = {𝑦𝑧𝑥} 𝜓18 = {𝑧𝑥𝑦}
𝜓19 = {𝑥𝑧𝑦} 𝜓20 = {𝑦𝑥𝑧} 𝜓21 = {𝑧𝑦𝑥}

(95)
Considerations analogous to those used in Theorem 2 allow us to argue that DM of

each type could exhibit arbitrary non-degenerate distribution of orders prescribed by her
type at each frame. Denote 𝑝𝜓𝛽 (𝑑) to be the probability that type 𝜓 exhibits total order

𝑑 at frame 𝛽, and 𝑊𝜓
𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) to be a function 𝑊 of extended random choice induced

by type 𝜓. Observe that each type of DM has at most two of the three total orders
𝑥𝑦𝑧, 𝑦𝑧𝑥, 𝑧𝑥𝑦. Therefore we have

𝑝𝜓𝛼(𝑧𝑥𝑦) + 𝑝𝜓𝛽 (𝑥𝑦𝑧) + 𝑝𝜓𝛾 (𝑦𝑧𝑥) < 2 ∀ 𝜓 ∈ Θ ⇒ (96)

𝑊𝜓
𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) < 2 ∀𝜓 ∈ Θ ⇒ 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) =

∑︁
𝜓∈Θ

𝜈(𝜓) ·𝑊𝜓
𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) < 2

where we used linearity of 𝑝 (and, therefore, 𝑊 ) in random choice probability 𝜌. This
proves eq.(93) in our example.

Observe that each type 𝜓 misses also one of the orders 𝑥𝑧𝑦, 𝑦𝑥𝑧, 𝑦𝑧𝑥, 𝑧𝑥𝑦, which
gives us new necessary condition, independent of 𝑊𝛼𝛽𝛾(𝑥, 𝑦, 𝑧) < 2. We can get a few
other conditions by permutations of these two. Other sets of four total orders, which are
partially missed by each type 𝜓, do not give us independent inequalities. We also can
consider sets of 5 and 6 orders. Obviously, there is no type of DM who has any of these
sets, therefore we can write the corresponding conditions as well; but the corresponding
inequalities are not independent. Summarizing, 𝑀2 representation requires the following
necessary25 conditions for any triple of alternatives 𝑥, 𝑦, 𝑧:

0 ≤ 𝑝𝛼(𝑧𝑥𝑦) + 𝑝𝛽(𝑥𝑦𝑧) + 𝑝𝛾(𝑦𝑧𝑥) < 2 (×2)
0 ≤ 𝑝𝛼(𝑥𝑧𝑦) + 𝑝𝛽(𝑦𝑥𝑧) + 𝑝𝛾(𝑦𝑧𝑥) + 𝑝𝛿(𝑧𝑥𝑦) < 3 (×3)

(97)

where 𝑝 are expressed via extended random choice according to eq.(94), and (×𝑚) stands
for the 𝑚 conditions emerging as the result of permutations among 𝑥, 𝑦, 𝑧.

Conditions given by eq.(97) hold for any triple of alternatives 𝑥, 𝑦, 𝑧. Do we have
more independent conditions for larger number of alternatives? The answer is: probably,

24Note that we do not care which state to call 𝑠1 and which 𝑠2, thus type {𝑥𝑦𝑧, 𝑦𝑥𝑧, 𝑦𝑧𝑥, 𝑧𝑦𝑥} is
equivalent to type {𝑧𝑦𝑥, 𝑦𝑧𝑥, 𝑦𝑥𝑧, 𝑥𝑦𝑧}

25If 𝑋 = {𝑥, 𝑦, 𝑧}, these conditions should be sufficient as well; we may try to show this with the help
of Axiom of Revealed Stochastic Preference from McFadden (2005)
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but before trying to find these conditions, let’s investigate what kind of information about
the distribution of orders for each frame analyst could possible get from the extended
random choice data. In case of 3 alternatives analyst can recover the full distribution
of orders in the random utility model describing choices inside a frame. It is no longer
the case if the number of alternatives are larger. Falmagne (1978) shows that the best
that analyst can do is to recover the distribution of the order for each alternative (i.e.
probability that 𝑥 is the best, probability that 𝑥 is second best, etc., probability that 𝑥
is the worst). Therefore 𝑝𝛽(𝑥𝑦𝑧𝑤) has no longer meaning of the probability that order
𝑥𝑦𝑧𝑤 appears in the random order representation of random choice, since there are many
representations. However, we can define it to be the minimum26 of this probability among
all random order representations:

𝑝(𝑑) = min{𝜇(𝑑) | 𝜇(.) represents random choice 𝜌} (98)

One can try to find an explicit formula for 𝑝𝛽(𝑑) and, most probably, this formula
would be a linear polynomial in 𝜌; we leave it for the further work. For our purposes
it is important that 𝑝𝛽(𝑑) could be close to one for some non-degenerate random choice
probabilities. To see this, denote 𝜌(𝑑) to be a (degenerate) random choice induced by
total order 𝑑. For example, 𝑑 = 𝑥𝑦𝑧, then 𝜌𝑥𝑦𝑧(𝑥) = 𝜌𝑥𝑦(𝑥) = 𝜌𝑥𝑧(𝑥) = 𝜌𝑦𝑧(𝑦) = 1 and
the rest 𝜌-s are zeros.

Lemma 2. Suppose 𝜌 admits random utility representation (i.e. 𝜌 ∈ 𝑅𝑂). Then

𝑝(𝑑) ≥ 1− | 𝐷 | · ||𝜌− 𝜌(𝑑)|| ∀𝑑 ∈ 𝐷 (99)

where | 𝐷 |=| 𝑋 |! is the number of distinct total orders on 𝑋.

Proof. Consider any random order representation of 𝜌 given by distribution 𝜇(.). Any
total order 𝑑′ ̸= 𝑑 is such that ∃𝑥, 𝑦 ∈ 𝑋: 𝑥 ̸= 𝑦, 𝑥𝑑𝑦 but 𝑦𝑑′𝑥. Next, 𝜌𝑥𝑦(𝑦) ≤ ||𝜌− 𝜌(𝑑)||
implies that 𝜇(𝑑′) ≤ ||𝜌− 𝜌(𝑑)||. Summing this over all 𝑑′ ̸= 𝑑, we get

𝜇(𝑑) = 1−
∑︁
𝑑′ ̸=𝑑

𝜇(𝑑′) ≥ 1− | 𝐷 | · ||𝜌− 𝜌(𝑑)|| (100)

Having definition of 𝑝(𝑑), we can find the following examples of necessary conditions
for the 𝑀2 representation, which include 4 alternatives27:

𝑝𝛼(𝑥𝑦𝑧𝑤) + 𝑝𝛽(𝑤𝑧𝑥𝑦) + 𝑝𝛾(𝑤𝑦𝑥𝑧) ≤ 2
𝑝𝛼(𝑥𝑦𝑧𝑤) + 𝑝𝛽(𝑤𝑧𝑥𝑦) + 𝑝𝛾(𝑧𝑤𝑦𝑥) ≤ 2

(101)

The corresponding calculations are bulky and omitted in this paper.

Note that it is enough to have 3 frames to falsify BAUP model 𝑀2. Now let’s turn
our attention to the general case. Denote BAUP model with size of state space | 𝑆 |= 𝐿

26Clearly, this minimization problem has a solution.
27Note that we cannot get these inequalities straightforwardly by dropping one of the alternatives from

all orders and considering the case with 3 alternatives. This gives us hope that they are independent of
conditions (97).
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by 𝑀𝐿 and consider it. We might expect to have similar picture with types 𝜓𝑖 of DM
corresponding to the sets of total orders emerging as expected utilities with some specific
state-dependent utility function. Formally, given state-dependent utility function 𝑢𝑠(𝑥)
with 𝑠 ∈ 𝑆 = {1, ..., 𝐿} and 𝑥 ∈ 𝑋, let

𝜓(𝑢, 𝐿) = { 𝑑 ∈ 𝐷 | ∃𝜋 : 𝐸𝜋[𝑢𝑠(𝑥)] ≥ 𝐸𝜋[𝑢𝑠(𝑦)] ⇔ 𝑥𝑑𝑦 } (102)

where 𝜋 is a probability measure on 𝑆. Next, denote Ψ(𝐿) to be the set of all possible
𝜓(𝑢, 𝐿):

Ψ(𝐿) = {𝜓 ∈ 2𝐷∖{∅} | ∃𝑢 : 𝜓 = 𝜓(𝑢, 𝐿)} (103)

The following lemma is an important technical result.

Lemma 3. Let the set of frames ℬ be given. Consider frame-consistent BAUP model𝑀𝐿

with the size of state space | 𝑆 |= 𝐿. If 𝐷 ̸∈ Ψ(𝐿) and | ℬ | ≥ max{| 𝜓 | | 𝜓 ∈ Ψ(𝐿)}+1,
then 𝑀𝐿 is distinguishable (meaning that it is not almost indistinguishable) with the
model of arbitrary consistent framing effects.

Proof. Note that each DM of population type 𝜃 ∈ Θ belongs to some type 𝜓; de-
note this type by 𝜓(𝜃) and define 𝜇(𝜓) = 𝜇(𝜃 : 𝜓(𝜃) = 𝜓). Take any 𝐶 ⊆ 𝐷 with
| 𝐶 |= max{| 𝜓 | | 𝜓 ∈ Ψ(𝐿)} + 1 (such 𝐶 exists, since 𝐷 ̸∈ Ψ(𝐿)). Note that 𝐶 * 𝜓
∀𝜓 ∈ Ψ. Let {𝛽𝑑}𝑑∈𝐶 ⊆ ℬ be a set of | 𝐶 | pairwise different frames (such set exists
because ℬ is large enough). Let 𝜖 > 0 be small enough for our purposes and pick some
𝜌 ∈ 𝑖𝑛𝑡 (𝒫consistent) such that ||𝜌𝛽𝑑 − 𝜌(𝑑)|| < 𝜖 ∀𝑑 ∈ 𝐶. Suppose that 𝑀𝐿 induces 𝜌.
Consider some DM of type 𝜓. Since 𝐶 * 𝜓, there is 𝑑 ∈ 𝐶 such that 𝑑 ̸∈ 𝜓. Consider

𝑅(𝜓) = conv ({𝜌(𝑑)}𝑑∈𝜓) (104)

The set of random choices which could be induced by decision maker of type 𝜓 at some
frame is contained in 𝑅(𝜓). From the other hand, 𝑑 ̸∈ 𝑅(𝜓), since 𝑑 is known to be one
of the vertices of polygon 𝑅𝑂 of random choices induced by the random utility model,
and 𝑅(𝜓) is a polygon equal to a convex closure of a subset of vertices of 𝑅𝑂 which does
not include 𝑑. Thus,

distance (𝑅(𝜓), 𝑑) ≡ 𝑞𝜓 > 0 (105)

since 𝑅(𝜓) is closed (distance is a usual Euclidean distance in the space of choice proba-
bilities for fixed frame). If 𝜖 < 𝑞𝜓 then we should have 𝜇(𝜓) · 𝑞𝜓 ≤ 𝜖, because 𝜌𝛽 is in the
𝜖-neighborhood28 of 𝑑, 𝑑 is a vertex of convex polygon 𝑅𝑂, and 𝜌𝛽 is a convex combination

of 𝜌𝜓
′

𝛽 , 𝜓′ ∈ Ψ with 𝜌𝜓
′

𝛽 ∈ 𝑅𝑂. Pick

𝜖 =
1

2

(︃∑︁
𝜓∈Ψ

1

𝑞𝜓

)︃−1

(106)

28Observe that ||𝜌 − 𝜌(𝑑)|| < 𝜖 in the space of extended random choices implies ||𝜌𝛽 − 𝜌𝛽(𝑑)||𝛽 < 𝜖 of
𝜌(𝑑) for the distance in the projection on any frame 𝛽
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𝒔2 

𝒔1 𝒔3 

Figure 4: Maximal assessment of probability simplex by 6 lines (example for 𝑆 =
{𝑠1, 𝑠2, 𝑠3} and 𝑛 = 4). There are 22 different regions.

Then 𝜖 < 𝑞𝜓 ∀𝜓 ∈ Ψ and

∑︁
𝜃∈Θ

𝜇(𝜃) =
∑︁
𝜓∈Ψ

𝜇(𝜓) ≤
∑︁
𝜓∈Ψ

𝜖

𝑞𝜓
=

1

2

(︃∑︁
𝜓∈Ψ

1

𝑞𝜓

)︃−1∑︁
𝜓

1

𝑞𝜓
=

1

2
(107)

contradicting 𝜇 being a probability. Therefore, 𝑀𝐿 does not induce 𝜌 ∈ 𝑖𝑛𝑡 (𝒫consistent)
and hence 𝑐𝑙(𝒫(𝑀𝐿)) ̸= 𝒫consistent. Lemma 3 is proven.

Lemma 3 says us that it is enough to argue that 𝐷 ̸∈ Ψ(𝐿) and have enough frames
in order to distinguish a frame consistent BAUP model 𝑀𝐿 from the model of arbitrary
consistent framing effects. The following geometrical result helps us to find situations in
which 𝐷 ̸∈ Ψ(𝐿):

Fact A. Hyperplane arrangement. (Orlik and Terao (2013)) The maximal number
of pieces by which 𝑟 hyperplane of dimension 𝑚 − 1 divide 𝑅𝑚 is given by the following
formula (provided that 𝑟 ≥ 𝑚) :

𝑌 𝑟
𝑚 =

𝑚∑︁
𝑘=0

(︂
𝑟
𝑘

)︂
(108)

Theorem 4. Let 𝑛 =| 𝑋 |. For some set of frames ℬ with | ℬ |≥ 3, consider frame
consistent regular BAUP models 𝑀 𝑙 with state space of size 𝑙 = 1, 2, .... Then:
(i) Family of models 𝑀 𝑙 induces a family of nested sets of extended random choices such
that

𝑅𝑂 = 𝒫(𝑀1) ⊆ 𝑐𝑙(𝒫(𝑀2)) ⊆ ... ⊆ 𝑐𝑙(𝒫(𝑀𝐿)) = 𝒫consistent (109)
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for some 𝐿 which we assume to be minimal subject to 𝑀𝐿 being almost indistinguishable
with a model of arbitrary consistent framing effects. 𝑀1 is equivalent to the random util-
ity model, and 𝑀2 is strictly in between of random utility model and arbitrary consistent
framing effects model.

(ii) 𝐿 ≤ | ℬ | ·𝑛!|ℬ|

(iii) If | ℬ | ≥ 𝑛!, then

𝐿 > max{ 𝐿 | 𝑌
𝑛(𝑛−1)

2
𝐿−1 < 𝑛! } (110)

and asymptotically as 𝑛→ ∞
𝐿 ≥ 𝑛

2
(111)

Proof. (i) follows from our results for example 4 and simple considerations. (ii) follows
from Theorem 3 and Lemma 1. Let’s show how we can get (iii).

Consider a couple of alternatives 𝑥, 𝑦 ∈ 𝑋. WLOG either 𝑢𝑠(𝑥) ≥ 𝑢𝑠(𝑦) for any state
and expected utility of 𝑥 is strictly greater than that of 𝑦, or 𝑢𝑠(𝑥) ≥ 𝑢𝑠(𝑦) for some
states and vice versa for other states. In the latter case the probability simplex is divided
by two parts on the region where expected utility of 𝑥 is greater than that of 𝑦, and the
region where we have the opposite. Note that these regions are divided by a hyperplane at
which E𝜇[𝑢𝑠(𝑥)] = E𝜇[𝑢𝑠(𝑦)]. Similar considerations apply to each of 𝑛(𝑛−1)

2
distinct pairs

of alternatives. The corresponding 𝑟 ≤ 𝑛(𝑛−1)
2

hyperplanes divide probability simplex on

no more than 𝑌
𝑛(𝑛−1)

2

|𝑆|−1 pieces. Continuity considerations imply that expected utility con-
structed with the help of probability from a certain piece should induce the same total
order for all probabilities in the interior of a piece. Therefore the total number of distinct

orders of the corresponding type29 𝜓 should be no more than 𝑌
𝑛(𝑛−1)

2

|𝑆|−1 . We may apply then

Lemma 3 to argue that 𝑀𝐿 is distinguishable with arbitrary consistent framing effects

model whenever 𝑌
𝑛(𝑛−1)

2
𝐿−1 < 𝑛!, implying the first formula of (iii). For the asymptotic

behavior30, consider

ln(𝑌
𝑛(𝑛−1)

2
𝐿−1 ) ∼ 2𝐿 · ln(𝑛) < 𝑛 · ln(𝑛) ∼ ln(𝑛!) (112)

Theorem 4 is proven.

Theorem 4 says that if we have enough frames and alternatives, BAUP models 𝑀𝐿

with state space of sizes 𝐿 are falsifiable. Moreover, the number of alternatives which
we need to distinguish 𝑀𝐿 from arbitrary consistent framing effects model is not large
(approximately, we need twice as many alternatives as states). However the proof of the
theorem requires us to use a lot of frames. It is not clear whether it is necessary or there
are better ways to falsify models 𝑀𝐿. Below is some statistics on the number of alterna-

29For the definition of types 𝜓 ∈ Ψ see eq. (102),(103).
30One might check that asymptotic formula works for 𝐿 << 𝑛(𝑛−1)

2 which is true for 𝐿 = 𝑛/2 and
large 𝑛

36



tives and frames which have shown to be sufficient for 𝑀𝐿 to exhibit “moderate” framing
effects.

#alternatives falsifiable size of S #frames used for reference

𝑛 𝐿 > ... | ℬ | 𝑌
𝑛(𝑛−1)

2
𝐿−1 𝑛!

3 2 3 4 6
4 3 23 22 24
5 3 23 26 120
6 4 587 586 720
7 4 587 1561 5040
8 5 24159 24158 40320
... ... ... ... ...

𝑛 >> 1 𝑛/2 𝑌 + 1 𝑌 𝑛!

As we can see, current theoretical constructions show us how to deal, realistically, with
state space of size 2 and, somewhat ambitious, with state space of size 3.

4 Conclusion

This paper considers preference uncertainty as a source of framing effects observed
in the random choice. The central framework is a BAUP model which assumes that
stochastic choice is a result of decisions of a population of agents. Each agent has a sub-
jective state space, which we interpret as space of “states of mind”, and state-dependent
utility function encoding variation of her preferences. The information part consists of
a prior probability distribution and Blackwell experiments associated with framings of
choice problems. Agents are expected utility maximizers. It is assumed that frames al-
low agents to learn only their own tastes and nothing else. There are two types of data:
usual random choice where framing environment could be arbitrary, and extended random
choice where analyst observes frames.

The main results are as follows. Firstly, random choice admits BAUP representation
if and only if it satisfies Revealed Dominance Acyclicity Axiom. We say that 𝑥 is revealed
to dominate 𝑦 if there is a choice problem with menu including both 𝑥 and 𝑦, such
that 𝑥 is chosen with probability one. Secondly, any non-degenerate random choice is
rationalizable by BAUP decision maker with a binary state space. Thirdly, knowledge of
extended random choice by itself does not allow to discipline the model. In particular,
almost any extended random choice could be rationalized by a BAUP model with any
given information structure which satisfies mild conditions of being consistent with frames
and fine. This result implies that almost any dynamic random choice is rationalizable by
BAUP model. Finally, paper argues that BAUP model with limited size of state space
produces moderate framing effects if analyst observes extended random choice. The size
of the state space could be as large as a half of size of the space of alternatives and still
BAUP model would provide testable predictions. However test which has been found so
far requires choice data with a lot of different frames. Thus the only sizes of state spaces
which seemed to be useful are 2 and 3.
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This paper contributes to the literature which considers how a (possibly hidden)
resolution of uncertainty interferes with a process of decision making. Beside the results
stated above, the paper argues that it is impossible to perform a good empirical test
of a Bayesian model which makes predictions only about non-degeneracy of some choice
probabilities; therefore we should try to discipline Bayesian models by imposing stronger
structures on them. The paper provides two technical contributions: a way to construct
subjective state space rationalizing DM’s choices31, and a hyperplanes’ arrangement ar-
gument allowing to connect the size of the state space with the variation of preferences
exhibited by the decision maker32.

5 Appendix

5.0.1 Only if part of Theorem 1 for ℎ(𝑖) with infinite signal space.

This is a direction for further work.

5.0.2 Proofs for Theorem 2

Proof for step 1. Consider 𝑢2(𝑥
𝑘) = 𝑘, 𝑢1(𝑥

𝑘) = −
𝑘−1∑︀
𝑖=1

(︂
𝜇𝑖

1− 𝜇𝑖

)︂
. Then

𝑈𝜇(𝑥
𝑘) = 𝜇 · 𝑘 − (1− 𝜇) ·

𝑘−1∑︁
𝑖=1

(︂
𝜇𝑖

1− 𝜇𝑖

)︂
(113)

Let’s start with the second statement. Consider 𝜇 ∈ (𝜇𝑘−1, 𝜇𝑘). Assume 𝑙 > 𝑘. Then
𝜇 < 𝜇𝑘 < ... < 𝜇𝑙 and we get

𝑈𝜇(𝑥
𝑘)− 𝑈𝜇(𝑥

𝑙) = 𝜇 · (𝑙 − 𝑘)

[︃
1

𝑙 − 𝑘

𝑙−1∑︁
𝑖=𝑘

𝜇𝑖
𝜇

· 1− 𝜇

1− 𝜇𝑖
− 1

]︃
> 0 (114)

where we use

0 < 𝑎 < 𝑏 < 1 ⇒ 𝑏

𝑎
· 1− 𝑎

1− 𝑏
=

𝑎−1 − 1

𝑏−1 − 1
> 1 (115)

Analogously let 𝑙 < 𝑘. Then 𝜇𝑙 < ... < 𝜇𝑘−1 < 𝜇 and we have

𝑈𝜇(𝑥
𝑘)− 𝑈𝜇(𝑥

𝑙) = 𝜇 · (𝑘 − 𝑙)

[︃
1− 1

𝑙 − 𝑘

𝑘−1∑︁
𝑖=𝑙

𝜇𝑖
𝜇

· 1− 𝜇

1− 𝜇𝑖

]︃
> 0 (116)

Therefore,
𝜇 ∈ (𝜇𝑘−1, 𝜇𝑘) ⇒ {𝑥𝑘} = Argmax

𝑥∈𝑋
𝑈𝜇(𝑥) (117)

Now assume 𝜇 ∈ [0, 𝜇1). Consider 𝑙 > 𝑘. Then again
𝜇𝑖
𝜇

· 1− 𝜇

1− 𝜇𝑖
> 1 for 𝑖 = 1, ..., 𝑛 − 1,

thus eq. (114) gives us 𝑈𝜇(𝑥
𝑘) > 𝑈𝜇(𝑥

𝑙). Analogously if 𝜇 ∈ (𝜇𝑛−1, 1], then
𝜇𝑖
𝜇
· 1− 𝜇

1− 𝜇𝑖
< 1

31See Theorem 1 and Lemma 1.
32See Theorem 4.
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and eq. (116) gives us 𝑈𝜇(𝑥
𝑘) < 𝑈𝜇(𝑥

𝑙) for any 𝑙 > 𝑘. Step 1 is proven.

Proof of step 2. We want to show that 𝜎𝑖 given in step 2 of the proof of theorem
2 are well-defined Blackwell experiments.
(i) Firstly note that since

∑︀
𝑘∈𝒥𝑖

𝜌𝐴𝑖(𝑥𝑘) = 1, we can check that

∑︁
𝑘∈𝒥𝑖

𝜎𝑖(𝑠1, 𝜏
𝑖
𝑘) = 1

∑︁
𝑘∈𝒥𝑖

𝜎𝑖(𝑠2, 𝜏
𝑖
𝑘) = 1 (118)

(ii) Secondly, we have 𝜎𝑖(𝑠1, 𝜏𝑘) > 0 and 𝜎𝑖(𝑠2, 𝜏𝑘) > 0 for 𝑘 ∈ 𝒥 ∖{𝑚𝑖} by construction.
(iii) Finally,

0 <
𝜖

𝜌𝐴𝑖(𝑥𝑚𝑖)
·

∑︁
𝑘∈𝒥𝑖∖{𝑚𝑖}

𝑘 − 1
2

2𝑛
· 𝜌𝐴𝑖(𝑥𝑘) ≤ (119)

≤ 𝜖

𝜌𝐴𝑖(𝑥𝑚𝑖)
·
𝑛− 1

2

2
· (1− 𝜌𝐴𝑖(𝑥𝑚𝑖)) < 1

Thus 𝜈𝑚𝑖
𝑖 ∈ (0, 𝜈) and we get 𝜎𝑖(𝑠1, 𝜏𝑚𝑖

) > 0, 𝜎𝑖(𝑠1, 𝜏𝑚𝑖
) > 0.
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